傳感器論文范文10篇
時間:2024-05-04 04:38:23
導語:這里是公務員之家根據多年的文秘經驗,為你推薦的十篇傳感器論文范文,還可以咨詢客服老師獲取更多原創文章,歡迎參考。
電場傳感器標定裝置優化設計論文
1便攜式電場傳感器標定裝置的優化設計原理
本文工作中設計的便攜式電場傳感器標定裝置,其基本結構由兩個平行極板構成,標定裝置的下極板開有圓孔,并采用特殊夾具固定被檢電場傳感器。被檢電場傳感器的動片與標定裝置的下極板平齊,使得被檢電場傳感器無需進入標定裝置的上、下極板之間的空間,即可感應到其電場。
2電場傳感器標定裝置結構參數的優化設計分析
基于有限元的相關理論,首先對標定裝置的機械結構建立模型。黃色部分為標定裝置,藍色部分為電場傳感器。然后,對幾何模型進行單元剖分、加載,可求解出標定裝置兩極板間的電場分布情況。根據求得的電場分布情況,可進行標定裝置結構參數的設計。在計算求解過程中,改變加載在兩極板間的電壓,使兩極板間形成的電場強度的理論值始終為20kV/m。被標定的場磨式電場傳感器外殼直徑8cm,感應片直徑6cm,傳感器外殼與標定裝置的下極板接觸。
2.1標定裝置極板間距和極板直徑對電場的影響研究
在標定裝置的設計上,受限于被檢電場傳感器的尺寸,以及要考慮標定裝置的便攜性,把標定裝置的極板直徑L固定為16cm。在L固定的條件下,分析兩極板間距H對極板間電場強度的影響,并以此確定極板間距H。依照圖2所建立的模型,取H值分別為1cm,2cm,3cm,4cm和5cm,,。橫坐標是電場傳感器感應片距離標定裝置中心的橫向距離,單位為m;縱坐標是感應片某一位置處的電場強度,單位是V/m。同時,在感應片的敏感范圍(x<0.03m)內,電場強度并非恒定值,而是隨著與標定裝置中心距離的增加發生了畸變。圖6為極板間電場強度實際值的畸變情況。理想情況下,在感應片的敏感范圍內,電場強度應保持不變,但由于標定裝置中極板邊緣效應的存在,使得感應片敏感區域內的電場不是一個恒定值,距離電場傳感器的外殼越近,畸變程度越大。定義在感應片敏感范圍(x<0.03m)內各個位置處電場強度的平均值與理論值之比為電場強度的畸變率,并用該值來衡量電場強度的變化程度?;兟试叫?,說明所產生的電場越接近均勻分布。綜上,在極板直徑固定為16cm時,極板間距為5cm時,電場強度的實際值與理論值最為接近,且在電場傳感器感應片感應區域內電場的畸變最小。同時,在保證H/L小于0.5的條件下,極板直徑L對實際電場的影響非常小。
生物傳感器研究論文
摘要:簡述了生物傳感器尤其是微生物傳感器近年來在發酵工業及環境監測領域中的研究與應用,對其發展前景及市場化作了預測及展望。生物電極是以固定化生物體組成作為分子識別元件的敏感材料,與氧電極、膜電極和燃料電極等構成生物傳感器,在發酵工業、環境監測、食品監測、臨床醫學等方面得到廣泛的應用。生物傳感器專一性好、易操作、設備簡單、測量快速準確、適用范圍廣。隨著固定化技術的發展,生物傳感器在市場上具有極強的競爭力。
關鍵詞:生物傳感器;發酵工業;環境監測。
中圖分類號:TP212.3文獻標識碼:A文章編號:1006-883X(2002)10-0001-06
一、引言
從1962年,Clark和Lyons最先提出生物傳感器的設想距今已有40年。生物傳感器在發酵工藝、環境監測、食品工程、臨床醫學、軍事及軍事醫學等方面得到了深度重視和廣泛應用。在最初15年里,生物傳感器主要是以研制酶電極制作的生物傳感器為主,但是由于酶的價格昂貴并不夠穩定,因此以酶作為敏感材料的傳感器,其應用受到一定的限制。
近些年來,微生物固定化技術的不斷發展,產生了微生物電極。微生物電極以微生物活體作為分子識別元件,與酶電極相比有其獨到之處。它可以克服價格昂貴、提取困難及不穩定等弱點。此外,還可以同時利用微生物體內的輔酶處理復雜反應。而目前,光纖生物傳感器的應用也越來越廣泛。而且隨著聚合酶鏈式反應技術(PCR)的發展,應
生物傳感器研究論文
一、生物傳感器的原理
待測物質經擴散作用進入生物活性材料,經分子識別,發生生物學反應,產生的信息繼而被相應的物理或化學換能器轉變成可定量和可處理的電信號,再經二次儀表放大并輸出,便可知道待測物濃度。
二、生物傳感器的種類
(1)按照其感受器中所采用的生命物質分類,可分為:微生物傳感器、免疫傳感器、組織傳感器、細胞傳感器、酶傳感器、DNA傳感器等。
(2)按照傳感器器件檢測的原理分類,可分為:熱敏生物傳感器、場效應管生物傳感器、壓電生物傳感器、光學生物傳感器、聲波道生物傳感器、酶電極生物傳感器、介體生物傳感器等。
(3)按照生物敏感物質相互作用的類型分類,可分為親和型和代謝型兩種。
生物傳感器研究論文
摘要:簡述了生物傳感器尤其是微生物傳感器近年來在發酵工業及環境監測領域中的研究與應用,對其發展前景及市場化作了預測及展望。生物電極是以固定化生物體組成作為分子識別元件的敏感材料,與氧電極、膜電極和燃料電極等構成生物傳感器,在發酵工業、環境監測、食品監測、臨床醫學等方面得到廣泛的應用。生物傳感器專一性好、易操作、設備簡單、測量快速準確、適用范圍廣。隨著固定化技術的發展,生物傳感器在市場上具有極強的競爭力。
關鍵詞:生物傳感器;發酵工業;環境監測。
中圖分類號:TP212.3文獻標識碼:A文章編號:1006-883X(2002)10-0001-06
一、引言
從1962年,Clark和Lyons最先提出生物傳感器的設想距今已有40年。生物傳感器在發酵工藝、環境監測、食品工程、臨床醫學、軍事及軍事醫學等方面得到了深度重視和廣泛應用。在最初15年里,生物傳感器主要是以研制酶電極制作的生物傳感器為主,但是由于酶的價格昂貴并不夠穩定,因此以酶作為敏感材料的傳感器,其應用受到一定的限制。
近些年來,微生物固定化技術的不斷發展,產生了微生物電極。微生物電極以微生物活體作為分子識別元件,與酶電極相比有其獨到之處。它可以克服價格昂貴、提取困難及不穩定等弱點。此外,還可以同時利用微生物體內的輔酶處理復雜反應。而目前,光纖生物傳感器的應用也越來越廣泛。而且隨著聚合酶鏈式反應技術(PCR)的發展,應
生物傳感器研究分析論文
摘要:簡述了生物傳感器尤其是微生物傳感器近年來在發酵工業及環境監測領域中的研究與應用,對其發展前景及市場化作了預測及展望。生物電極是以固定化生物體組成作為分子識別元件的敏感材料,與氧電極、膜電極和燃料電極等構成生物傳感器,在發酵工業、環境監測、食品監測、臨床醫學等方面得到廣泛的應用。生物傳感器專一性好、易操作、設備簡單、測量快速準確、適用范圍廣。隨著固定化技術的發展,生物傳感器在市場上具有極強的競爭力。
關鍵詞:生物傳感器;發酵工業;環境監測。
中圖分類號:TP212.3文獻標識碼:A文章編號:1006-883X(2002)10-0001-06
一、引言
從1962年,Clark和Lyons最先提出生物傳感器的設想距今已有40年。生物傳感器在發酵工藝、環境監測、食品工程、臨床醫學、軍事及軍事醫學等方面得到了深度重視和廣泛應用。在最初15年里,生物傳感器主要是以研制酶電極制作的生物傳感器為主,但是由于酶的價格昂貴并不夠穩定,因此以酶作為敏感材料的傳感器,其應用受到一定的限制。
近些年來,微生物固定化技術的不斷發展,產生了微生物電極。微生物電極以微生物活體作為分子識別元件,與酶電極相比有其獨到之處。它可以克服價格昂貴、提取困難及不穩定等弱點。此外,還可以同時利用微生物體內的輔酶處理復雜反應。而目前,光纖生物傳感器的應用也越來越廣泛。而且隨著聚合酶鏈式反應技術(PCR)的發展,應
傳感器變送器分析論文
摘要:傳感器和變送器在儀器、儀表和工業自動化領域中起著舉足輕重的作用。與傳感器不同,變送器除了能將非電量轉換成可測量的電量外,一般還具有一定的放大作用。本文簡單地介紹了各類變送器的特點,以供使用者選用。
關鍵詞:傳感器變送器選用
一、一體化溫度變送器
一體化溫度變送器一般由測溫探頭(熱電偶或熱電阻傳感器)和兩線制固體電子單元組成。采用固體模塊形式將測溫探頭直接安裝在接線盒內,從而形成一體化的變送器。一體化溫度變送器一般分為熱電阻和熱電偶型兩種類型。
熱電阻溫度變送器是由基準單元、R/V轉換單元、線性電路、反接保護、限流保護、V/I轉換單元等組成。測溫熱電阻信號轉換放大后,再由線性電路對溫度與電阻的非線性關系進行補償,經V/I轉換電路后輸出一個與被測溫度成線性關系的4~20mA的恒流信號。
熱電偶溫度變送器一般由基準源、冷端補償、放大單元、線性化處理、V/I轉換、斷偶處理、反接保護、限流保護等電路單元組成。它是將熱電偶產生的熱電勢經冷端補償放大后,再帽由線性電路消除熱電勢與溫度的非線性誤差,最后放大轉換為4~20mA電流輸出信號。為防止熱電偶測量中由于電偶斷絲而使控溫失效造成事故,變送器中還設有斷電保護電路。當熱電偶斷絲或接解不良時,變送器會輸出最大值(28mA)以使儀表切斷電源。一體化溫度變送器具有結構簡單、節省引線、輸出信號大、抗干擾能力強、線性好、顯示儀表簡單、固體模塊抗震防潮、有反接保護和限流保護、工作可靠等優點。一體化溫度變送器的輸出為統一的4~20mA信號;可與微機系統或其它常規儀表匹配使用。也可用戶要求做成防爆型或防火型測量儀表。
測力傳感器設計分析論文
摘要:文中介紹了在測力傳感器的設計過程中經常運用的兩種應力集中的設計原則。按照這兩種應力集中的原則,對彈性體進行結構設計,能夠收到提高測力傳感器的測力精度和測力靈敏度的良好效果。
關鍵詞:測力傳感器,應力集中,精度,靈敏度
一、概述
對于電阻應變片式測力傳感器(以下簡稱“測力傳感器”)來說,彈性體的結構形狀與相關尺寸對測力傳感器性能的影響極大??梢哉f,測力傳感器的性能主要取決于其彈性體的形狀及相關尺寸。如果測力傳感器的彈性體設計不合理,無論彈性體的加工精度多高、粘貼的電阻應變片的品質多好,測力傳感器都難以達到較高的測力性能。因此,在測力傳感器的設計過程中,對彈性體進行合理的設計至關重要。
彈性體的設計基本屬于機械結構設計的范圍,但因測力性能的需要,其結構上與普通的機械零件和構件有所不同。一般說來,普通的機械零件和構件只須滿足在足夠大的安全系數下的強度和剛度即可,對在受力條件下零件或構件上的應力分布情況不必嚴格要求。然而,對于彈性體來說,除了需要滿足機械強度和剛度要求以外,必須保證彈性體上粘貼電阻應變片部位(以下簡稱“貼片部位”)的應力(應變)與彈性體承受的載荷(被測力)保持嚴格的對應關系;同時,為了提高測力傳感器測力的靈敏度,還應使貼片部位達到較高的應力(應變)水平。
由此可見,在彈性體的設計過程中必須滿足以下兩項要求:
傳感器網絡控制論文
摘要:多無線收發器的傳感器網絡(Multi-RadioWirelessSensorNetworks)是一種帶寬較寬,網絡適時性較強,吞吐量較大的特殊的無線傳感器網絡。本文研究了多無線收發器傳感器網絡上的MAC協議,設計實現了一種充分地利用了這這種網絡的多收發器、多頻道特性的MAC協議,該協議能夠充分發揮多收發器傳感器網絡的特性,為上層協議的開發提供有力的保障。
關鍵詞:多收發器;傳感器網絡;MAC協議
一、引言
無線傳感器網絡是由大量具有通信與計算能力的傳感器節點構成的網絡系統。傳感器網絡除了具有AdHoc網絡的移動性、斷接性、電源能力局限等共同特征以外,還具有很多其他鮮明的特點,如通信能力有限、計算能力有限、感知數據流巨大并具有實時性等特點。
無線傳感器網絡的通信帶寬較低,也存在廣播數據的沖突問題,雖然可以采用握手、時間調度等協議來盡量減少丟包和沖突,但這些軟件協議并不能從根本上解決碰撞、無線沖突、帶寬較低的問題。多收發器無線傳感器網絡(MR-WSNs:multipleradiowirelesssensornetworks)采用了多個無線收發器,可以在很大程度上減少網絡的沖突、增加通信帶寬。多收發器的傳感器網絡結合了無線傳感器網絡和無線網格網絡的優點,節點廉價、移動性和可擴展性能好、安放方便,具有多個無線模塊、多頻道無線連接的特點,多個無線模塊可以同時的工作,因此可以降低無線沖突,擴展通信帶寬,提高了傳感器網絡的實時性,降低了網絡延遲。
目前多收發器網絡的研究一般都用在mesh網絡上[1];Bruno,Conti和Gregori在[2]中提出了一種應用多收發器網絡的mesh的技術。在多收發器無線網絡中,由于其無線模塊、無線信道的增多,需要一個有效的MAC協議來支持,使其多無線模塊、多無線頻道的功能得到合理利用。
氣壓傳感器電路設計論文
1壓阻式氣壓傳感器
1.1氣壓傳感器的結構設計
壓阻效應于1865年由LordKelvin首先發現,現在這個原理廣泛應用于傳感器原理中。當傳感器薄膜結構上的壓敏電阻受到外界壓力作用時會產生形變,使電阻率發生變化從而引起電信號的改變,這就是壓阻式壓力傳感器的工作原理。由此可見,壓敏電阻的變化與受到的壓力大小和壓阻系數有關。本文中的氣壓傳感器是基于硅的壓阻效應設計的,制備的氣壓傳感器芯片結構截面圖。傳感器結構由一個單晶硅彈性薄膜和集成在膜上的4個壓敏電阻組成,4個電阻形成了惠斯通電橋結構,當有氣壓作用在彈性膜上時電橋會產生一個與所施加壓力成線性比例關系的電壓輸出信號。
1.2氣壓傳感器制作工藝流程
整個流程主要是采用硅表面微加工工藝。與傳統的壓阻式壓力傳感器的加工方法相比,該工藝流程采用了外延單晶硅硅膜的工藝進行真空腔密封,這種方法可以克服傳統的濕法刻蝕工藝的缺點,加工出的單晶硅膜具有很好的機械性能。①首先,對硅襯底采用各向異性干法刻蝕,刻蝕出一道道約5μm深的淺槽。然后采用各向同性干法刻蝕,使淺槽下方形成一個連通的腔。②采用外延工藝,在襯底上進行單晶硅外延,并利用外延的硅材料將淺槽完全封住,從而在下面形成一個接近真空的密封腔。外延工藝如下:溫度為1135℃,采用的是H2,PH3等氣體,外延時的真空度為80torr。③在對外延硅層的局部區域進行小劑量硼離子注入。該部工藝主要是為了制作壓敏電阻,壓敏電阻主要位于膜四邊的中央。④對局部區域進行大劑量硼離子注入。該步工藝主要是要實現壓敏電阻條之間的歐姆連接,并為壓敏電阻的引出做準備。⑤在硅片表面生長一層氧化層及氮化層,用作絕緣介質層。⑥對氧化層和氮化層光刻并圖形化,形成接觸孔。⑦濺射金屬層并光刻圖形化,形成引線及壓焊塊。
2測試電路設計
無線傳感器與煤礦安全論文
一、煤礦安全監控系統介紹
煤礦安全監控系統應該是一個功能完善結構復雜的系統。該系統要具有對各類信號積累計量、開關量、模擬量等進行實時采集,快速傳遞,完整保存,及時處理,清晰顯示,聲光報警,控制等功能。系統可以對現場的一氧化碳,甲烷等氣體的濃度,井下的濕度,溫度,風速以及礦井內有無粉塵和煙霧進行實時監控。對于礦井下的各類設備可以進行遠程遙控,比如打開或關閉主通風機,開啟或關閉風門。為了監控甲烷濃度,一氧化碳濃度,風速,累計產煤量,溫度,煙霧,饋電狀態,油門狀態,風筒狀態,局部通風機打開和關閉,所以系統較為復雜,組成部分也比較多。系統包括主機、I/O接口電路、分站、無線傳感器、報警器、電纜、接線柜、電源箱等設備。無線傳感器網絡的基本組成單位是數量眾多的移動或靜止的傳感器。傳感器是以多跳及自自組織的形式來構建監控網絡的。它的功能是對網絡覆蓋區域內的監控對象進行信息的測量、采集、傳送、處理,并報告給用戶。用戶接受到的數據其實是先由現場的傳感器探測到,數據匯合到匯聚節點后在通過網絡發送過來的。無線傳感器網絡的英文是WirelessSensorNetwork,簡稱WSN。系統中使用了三大基礎技術,首先利用傳感器技術采集數據,然后利用通信技術傳輸信息,最后利用計算機技術進行處理。煤炭監控管理系統,無線數據傳輸平臺和地面中心站這三個部分構成了煤礦無線安全監控網絡系統。
(1)煤炭監控管理系統:包括用戶使用的操作界面,網絡通訊的服務器以及實時數據庫的服務器。
(2)無線數據傳輸平臺:平臺使用的是像CDMA網絡這樣的無線公網。
(3)地面中心站:包括監控主機、I/O接口、UPS電源、CDMA無線路由器、打印機、配套的監控軟件、分站、溫度傳感器、風速傳感器、煙霧傳感器、一氧化碳傳感器、瓦斯傳感器、設備開停傳感器、遠動開關等等各類設備組成。
二、網絡節點結構