深海熱流探測技術研究論文
時間:2022-02-23 09:19:00
導語:深海熱流探測技術研究論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。
海底熱流探測,記錄的是來自地球內部的熱能。當兩種不同溫度介質接觸時,分子的動能會在兩種介質之間傳遞,直至達到熱平衡。熱流表示由溫差引起的能量傳遞。沉積物熱流以熱傳導為主,在一維穩態純傳導的條件下,地熱流q可以用下式描述[1]:
海底地溫梯度是一個向量,表示地球等溫面法線方向上溫度變化程度及變化方向,因此只要知道深度間距dZ和它們之間的溫差dT即可。
熱導率κ是一個表征沉積物導熱能力快慢的物理量,沉積物的組成類別及水含量不同熱導率κ也不同。熱導率測量的理論基礎是從瞬間熱脈沖由無限長圓拄形金屬探針進入無限大介質的傳導理論上發展起來的(Blackwell等,1954;Hyndman等,1979),該理論認為[2,3]當探針溫度、沉積物溫度與環境溫度達到平衡時,熱脈沖使探針溫度升高,高于環境溫度,在熱脈沖過后的一定時間內,地熱探針內的熱敏電阻的溫度T(t)由下式給出:
2海底熱流原位探測技術
2.1海底溫度梯度原位測量
海底沉積物的溫度梯度測量自20世紀50年代至今一直沿用兩大方法,即Bullard(布拉德)型探針和Ewing(艾文)型探針。
溫度梯度測量開始于1948年,首先由美學者Bullard(布拉德)設計了海底熱流計,如圖1所示。它用來測量海底沉積物的地溫梯度,并利用取樣器將沉積物樣品取回,在實驗室測量它的熱導率。經過十多年的完善,Bullard型熱流計也由靈敏度較差的熱電偶改為靈敏度較高的熱敏電阻,同時確立了海底溫度梯度原位測量的基本模式。
Bullard型海底熱流計探針的基本結構尺寸:,長3~6m,外經Φ27mm,內經Φ11.2mm的鋼管。探針的上、下兩端各安裝一個熱敏元件,上部有一密封倉,內置記錄系統,下部裝一針尖,以便插入海底沉積物時減小阻力,設備*自重插入沉積物。上世紀70年代后期,加拿大實用微系統公司(AML)研制的TR-12S型Bullard式探針得到了進一步改進,結構尺寸長3m,直徑Φ16mm,探管內有8個YSI-44032熱敏電阻,從測量精度到外觀設計都有了極大提高。
隨著制造技術的不斷進步,熱流計的發展趨勢是探針逐漸變細、變薄、熱敏電阻的數量也在增加,目的在于探針變細可進一步減少插入沉積物時帶來得擾動,變薄可提高熱敏電阻對沉積物溫度變化的靈敏度,熱敏電阻數量的增加可以在梯度計算時相互驗證,并確保測量的準確性。
上世紀60年代初期,Ewing(艾文)完成了自己設計的海底溫度梯度測量計[4],即人們通常說的Ewing型熱流計,也稱為拉蒙特型熱流計,是從拉蒙特地質觀察所普及開的。它的結構特點,圖2所示。在柱狀取樣器周圍,相隔一定距離不同方位安裝3~8個很細的探針,探針直徑3mm,長20~24mm,避免了Bullard型熱流計在設備插入沉積物時帶來的攪動和測量時間過長等問題,提高了海上測量的工作效率;但仍沒有解決海底測量熱導率的問題。
以上兩大類熱流計在早期的沉積物溫度梯度測量中,發揮了積極的作用。隨著社會的進步,設備制造技術的發展,人們不僅對沉積物熱流原位測量中的溫度梯度感興趣,而且更加關注沉積物熱導率的原位測量問題。
2.2海底沉積物熱導率測量
熱導率與物質的組成、結構、密度、溫度及壓強有關。海底沉積物熱導率測量技術的發展,歷經幾十年的探索,由原始的水分法、細針探測法,逐漸發展到了原位測量法。水分法是依據Ratcliffe(1960)關于海洋沉積物熱導率與水分的關系,通過測定沉積物的水分,不需要特殊的儀器,即可估算熱導率值。細針探測法(VonHerzenandMaxwell,1959)是通過均勻的電阻絲,給圓柱小探針連續加熱,溫升隨時間增加,逼近一條對數漸進線,漸進線的斜率正比于探針周圍材料的熱阻率。其研究證明,該方法需從海底取回沉積物樣品在實驗室內測量,同時把溫度和壓力修正到沉積物在海底的條件,勢必造成熱導率和溫度梯度不在同一站位測定的問題。所以要尋找一種能在同一站位獲得熱導率和溫度梯度兩種參數的測量方法,而不必取樣,這正是我們研究的海底原位熱導率測量方法。
2.2.1連續加熱線源法
連續加熱線源法,由Sclater等人于1969年用于海底沉積物的熱導率測量[5],它把探針理想化為無限長的完全導熱圓柱,通過恒定電流對其加熱,探針內加熱電阻絲的溫度升高快慢程度與沉積物的熱導率有關,沉積物的導熱性能差,溫度升高快;沉積物的導熱性能好,溫度升高慢。沉積物的熱導率k與探針內加熱電阻絲表面的溫升關系,可以通過求解無限長圓柱體的導熱微分方程來得到[6],當時間t=0時,探針的溫度為T0;時間t時的溫度T為:
其中T1是探針周圍沉積物的平衡溫度。沿圓柱長度加上一恒定的熱量Q,就可以測定熱導率κ,假設開始時溫度為零,則有(Jaeger,1956[7)]:
(8)式中T1和T0是可求的,所以熱導率κ就可以用最小二乘法對測量溫度進行擬合。
上世紀80年代初期,上述方法在美國伍茲霍爾海洋研究所(WHOI)得到了進一步的發展和應用,但其致命弱點是,海底沉積物含水量很大,持續供熱導致探針溫度不斷升高,很容易導致探針周圍的孔隙水發生對流,而使根據熱傳導方程推導的公式帶來很大的誤差;其次海上作業時間長,船的漂移難以控制,機械擾動嚴重以及持續供熱需要大量的電能等問題,故這種技術沒有得到廣泛的應用。
2.2.2脈沖加熱法
1979年,Liste(r李斯特)在Bullard型熱流計的基礎上,進行了大膽、徹底的革新,首先將Bullard型熱流計點熱敏元件保留在兩端不動,在中間插入熱敏元件組。點熱敏元件仍然完成地溫梯度的測量,熱敏元件組測量熱脈沖后的平均溫度,用于計算沉積物的熱導率。隨著科學技術的發展和進步,Liste(r李斯特)在記錄方式上采用了數字化格式,使其測量精度得到提升。這樣Liste(r李斯特)在Bullard型熱流計的基礎上利用“熱線源法”的理論,完成了海底沉積物地溫梯度和沉積物熱導率原位測量的技術革新,即海底沉積物熱導率原位測量技術[8]。
探針插入海底沉積物,加上熱脈沖后,可以把探針看作是處于沉積物溫度之上的、恒定的初始溫度T0的條件下,假設沒有接觸電阻(對于海洋沉積物,這假設大多正確),那么在時間t,探針的溫度Tτ為:
式中:k是沉積物的擴散系數;a是探針的半徑;c是沉積物的比熱;ρ是沉積物的密度;S是探針單位長度的熱容;τ定義為探針的熱時間常數;α是沉積物熱容與探針材料熱容之比的兩倍,J(nX)和Y(nX)分別為是n階貝塞爾函數的第一項和第二項。
當探針的熱時間常數τ>1時,Bullard函數為:
脈沖加熱法是在探針內不僅裝有一組熱敏元件,同時還包括一根加熱電阻絲,當儀器倉控制電路給電阻絲瞬間加熱后,電阻絲會使探針溫度突然升高,然后隨時間緩慢衰減,熱敏元件組記錄溫度隨時間的變化,最終依據計算出熱導率。
通過對連續加熱線源法與脈沖加熱法兩種技術進行比較,脈沖加熱法應用較為廣泛。
3海底熱流原位測量技術需要解決的幾個問題
3.1提高探針自行插入的能力
一般熱流原位測量設備在海上使用的成本較高,由于波浪、海流及風的作用,海洋的工作環境相當復雜,要求測量設備必須插得住,同時需要在沉積物中保持10~20min才能達到溫度平衡,此時船舶可漂移400~500m。表1是三個航次探針插入沉積物的實際情況[9,10]。
通過對三個航次的測量結果分析,地熱探針的結構設計必須在保證剛度的前提下,對探針水中的運動特性和插入沉積物瞬間的力學特性進行反復計算和演算,用于確定最佳配重和外形設計的依據,這樣就會減少由于測量設備帶來的拖倒、拉斷及丟失。
3.2提高海上測量的準確度
目前對同一調查站位,采用在冬季和夏季進行重復測量,根據觀測資料來確定海水溫度變化對地殼熱流的影響程度,判定水溫變化隨海底地殼深度衰減的情況。研究發現,直到海底之下6~7m二者方趨于一致,這說明6~7m之下,水溫變化的影響已大幅度減弱。而目前地熱探針長度一般為3.0~4.5m,這樣增加了海上重復探測的工作量,為了減少重復,加長地熱探針,使下插深度增大,以盡可能采用下部熱敏元件的記錄來進行資料處理。
3.3常年觀測系統
研究業已證明海洋底層水溫變化大,大氣溫度的日變化可影響到海底以下5m左右,氣溫的年變化可影響到海底以下50m。而對于水體則影響更深,再加上海流、波浪、潮汐的混合作用,氣溫變化的影響可波及到1500~2000m深的水體。而水溫的變化又直接作用于海底沉積物。通過大量的實測溫度分析可以看出,溫度隨深度呈非線性變化,特別是海底之下0~5m范圍內,溫度變化更加復雜,由此可見,地表因素的影響非常大。但如何從地熱資料中消除這些淺層影響,而得出真正來自地下深處的熱信息也是一個未解的難題。如果在海上作業中,首先在預定站位投放一長期溫度監測設備,自動記錄沉積物和底層海水的溫度變化??梢酝ㄟ^聲通訊設備定時發送到岸站,可獲得常年的溫度變化記錄,從而設計計算程序,消除淺層因素的影響;同時,也為防災減災提供原始的連續資料。
4結束語
本文分析了海底沉積物熱流探測技術的發展與理論的建立,鑒于我國目前在該技術領域的工作開展還比較薄弱,極大的限制了我國海洋熱流探測和應用。因此,在充分認識和了解海洋熱流探測技術的發展和現狀的情況下,開發我國具有自主知識產權的海洋熱流原位探測技術刻不容緩。
參考文獻:
[1]DLTurcotte,GSchubert,Geodynamics.Applicationsofcontinuumphysicstogeologicalproblems[M].JohnWiley&Son(slstedition),1982,134-137.
[2]BullardEC.TheflowofheatthroughtheflooroftheAtlanticocean[J].ProcRSocLondonSerA,1954,222:408-429.
[3]BullardEC,DayA.TheflowofheatthroughtheflooroftheAtlanticocean[J].GeophysJRastronSoc,1961,4:282-292.
[4]GerardR,LangsethMG,EwingM.ThermalgradientmeasurementsinthewaterandbottomsedimentofwesternAtlantic[J].JGeophysRes,1962,67:785-803.
[5]SclaterJG,CorryCE.In-situmeasurementofthethermalconductivityofocean-floorsediments[J].JGeophysRes,1969,74:1070-1081.
[6]陳忠榮.海洋地熱研究中沉積物熱導率原位測定[J].海洋技術,1988,7(1):24-33.
[7]JaegerJC.Conductionofheatinaninfiniteregionboundedinternallybyacircularcylinderofaperfectconductor[J].AustralianJPhysics,1956,9:167-179.
[8]ListerCRB.Measurementofin-situconductivitybymeansofaBullard-typeprobe[J].GeophysJ,1970,19:521-533.
[9]李乃勝.沖繩海槽地熱[M].青島:青島出版社,1995,7-67.
[10]李乃勝.中國東部海域及周邊地殼熱流初探[J].海洋科學,1992,2:48-51.
摘要:熱流探測技術的應用對研究海洋地殼活動規律、防災減災與天然氣水合物新能源探測具有重要意義。論文對海底熱流原位探測技術作了全面的介紹,分析了溫度梯度與熱導率原位、快速測量的發展現狀,指出了我國未來發展海底熱流探測技術急待解決的問題。
關鍵詞:熱流探測;原位測量;溫度梯度;熱導率引言
- 上一篇:市委副書記在安全例會講話
- 下一篇:政府網站建設分析論文