智能醫學工程學科評估范文

時間:2023-11-16 17:29:28

導語:如何才能寫好一篇智能醫學工程學科評估,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。

智能醫學工程學科評估

篇1

1.1體制不健全、職責不明確

自20世紀70年代我國建立臨床醫學工程學科以來,全國各級醫院相繼組建了臨床醫學工程科(部),但在管理體制上比較混亂,有的隸屬后勤部門,有的隸屬醫技部門。在職責上差別也很大,有的只重視醫療儀器設備的采購,而忽視了儀器設備的功能開發和利用;有的只重視維修和日常管理,而忽視了儀器設備質量安全性、可靠性的控制和檢測;有的甚至將總務后勤部門的水、電、氣、機械等動力方面的維修摻雜進醫學工程科的日常工作,使得醫學工程技術人員不堪重負,這些都嚴重影響了臨床醫學工程學科的健康發展。

1.2領導不重視、重醫輕工思想嚴重

目前,各級醫療行政部門的領導中,醫學工程專業出身的很少,對此專業不甚了解,未能充分認識到醫學工程科在醫院發展中的重要性。同時,因為醫學工程科不能像臨床科室那樣直接創造效益,往往造成領導院忽視醫學工程技術人員在設備采購論證、應急搶修、預防性維護及質量控制等方面所帶來的間接經濟效益,對于醫學工程科在人員配備、進修培訓、職稱評定等方面給予了限制。

1.3自身整體素質不高,技術水平參差不齊

據江蘇某高校對4個省部分醫院的調查,醫學工程技術人員的學歷結構為:研究生占1.8%,本科占12%,大專占33.7%,高中和中專占53.5%。湖南某高校調查30所醫院醫學工程技術人員的高、中、初級職稱結構為8.4%,35.9%,55.7%tz】。不僅學歷與職稱結構不合理,而且真正醫學工程專業畢業的人員占的比例也很少,許多現有人員未經過正規的醫療設備專業學習和培訓,缺乏相關專業理論基礎,知識面狹窄。隨著現代醫學的發展及各種新型醫療設備的引進使得醫院迫切需要素質高、能力強、知識面廣的醫學工程通用型人才。

1.4在職培訓工作落后,發展進步受限

一方面,由于編制人員較少,醫學工程技術人員的日常設備維修及計量質控等任務較重,再加上這些工作不直接產生效益,管理層不予以重視,醫學工程技術人員較少能獲得與臨床醫生一樣出去培訓進修的機會。據調查顯示,縣以上醫院64%的醫學工程技術人員從未參加過繼續教育。另一方面,目前我國醫學工程技術人員的職稱評定沒有一個專門的機構和組織,往往是掛靠在其他行業。而職稱考試很少涉及專業知識,職稱評定也沒有專業評委,導致一些醫學工程技術人員的晉升困難,甚至晉升“無門”。在職教育培訓、職稱晉升及待遇得不到相應解決,造成了醫學工程技術人員進取心不強或人才流失。

1.5制度守舊,積極性和能動性得不到充分發揮

由于歷史原因,在大多數醫院,醫學工程科的主要職能定位在醫療設備的維修上,從而使得醫療設備在購買時沒有醫學工程技術人員的論證參與,以致許多性能沒有充分開發,功能閑置。由于儀器設備的使用管理都在臨床科室,經常出現不按章操作,不定期進行維護保養的情況,甚至帶故障運行,造成更大的損壞;有的設備由于使用頻繁,臨床使用科室往往找借口阻礙醫學工程人員對設備進行必要的檢修和質量安全檢測,從而使的設備的安全性和可靠性得不到保證。同時,由于醫學工程人員的工作很難用指標直接量化,他們的勞動價值很能被凸顯出來,工作性質和成效被低估,在勞務補貼方面往往與臨床科室有較大的差距,從而導致醫學工程部門的工作職能得不到充分體現,醫學工程人員的能動性、積極性得不到充分發揮,工作效率不高。一

2臨床醫學工程部門需強化的主要職能

隨著科技的飛速發展,臨床醫學越來越依賴高精尖設備與技術,臨床醫學工程師已經成為現代臨床醫學與工程學之間的橋梁,醫學工程的學科發展也逐漸得以完善,醫院對醫學工程部門的重要性也越來越重視。我們必須抓住機遇,順應醫院的發展建設,滿足臨床醫療的需要,保障醫療設備使用的有效性和安全性。因此,作為臨床醫學工程部門,必須強化以下5個方面的職能。

2.1強化參謀職能。做好設備引進過程中的科學論證和把關工作

醫療設備的采購是一個復雜而又十分重要的過程,科學規范的采購必然會給醫院帶來巨大的社會和經濟效益,否則就會給醫院帶來巨大損失。首先,在設備采購之前。要廣泛征求意見,根據使用科室的實際情況和發展需要,對待引進設備的經濟效益進行評估預測;了解不同廠商設備的性能指標、價格、維持費用以及此類設備在其他醫院的運行狀況等;對醫療設備的配置做出較為合理的方案,并寫出可行性論證報告,為醫院領導的決策提供有力的依據,從而確保所引進的設備既能滿足臨床科室的日常工作和科研需要,又不至于因為一味的貪多求全發揮不了設備的最大效益,造成資源浪費。其次,設備到貨安裝后,醫學工程部門要依據合同條款,對設備進行驗收檢測,包括設備的軟硬件指標、性能參數及電氣安全等,以保證所購設備的安全性和有效性,降低源頭風險。

2.2強化維修職能。做好設備的應急維修和預防性維護工作

應急維修也稱一線維修,這是臨床醫學工程師必須具備的素質和技能。設備在使用工程中不可避免會出現各種故障,只有及時排除故障,才能保證設備安全有效的使用,滿足臨床醫療的需要。預防性維護(PreventiveMaintenance)是指周期性地對儀器設備進行維護保養和功能檢查,動態觀察設備的運行狀況,它是對儀器設備的一種動態管理。隨著越來越多的先進儀器設備應用于醫院臨床,對醫療設備的動態管理提出了更高的要求,作為醫學工程技術人員,我們要將設備的維護管理模式由原始的被動搶修向預防性維護過渡,動態掌握設備有效生命周期中的運行信息(包括它的運行環境條件、技術參數指標、使用消耗狀況等),做好記錄,建立設備檔案,并以此為依據對設備的運行情況進行科學的分析,制定可行的周期性維護保養方案,通過預防性的檢修避免突發性事件,保證設備處于良好狀態,降低設備的故障發生率,延長設備的使用壽命J。

2.3強化管理職能。做好設備的質量管理與控制工作

科技的發展極大地促進了醫學技術的發展和進步,人們在應用新技術和新設備的同時,由于對其潛在的風險和臨床應用質量安全問題認識不足,造成在醫療設備在應用中時常出現安全隱患、引發醫療事故、對患者或操作人員造成傷害的案例。這已經引起了人們對醫療設備質量與安全的廣泛關注。近年來,醫療設備質量控制已成為醫療機構設備管理部門研究的一個重要課題。2006年,總后衛生部率先對醫療設備質量控制進行了試點和摸底,并于2008年6月下達了《軍隊衛生裝備質量控制實施通用要求(試行)》及《軍隊衛生裝備質量控制檢測技術規范(試行)》的通知。2010年1月,國家衛生部頒發了《醫療器械臨床使用安全管理規范(試行)》,其中明確指出,醫學工程部門具體負責本醫療機構醫療器械臨床使用安全管理和工程技術支持工作,這賦予了我們醫學工程部門新的使命任務。我們要充分認識開展醫療設備質量控制工作的重要性,切實樹立以臨床為中心的觀念,拓展醫學工程部門的技術保障服務范圍,通過制定醫療設備質量管理控制方針、目標、職責、程序、制度等,實現醫療設備在論證、采購、使用、維護、維修、退役等全過程的質量管理與控制,確保醫療工作質量,保證患者診治安全有效,提高醫院綜合效益,從而推進醫學工程學科建設,提升醫學工程技術人員地位。

2.4強化培訓職能。做好醫護人員的安全培訓與考核工作

隨著越來越先進的醫療設備廣泛應用于臨床,在幫助醫護人員診治患者的同時,也要求醫護人員必須掌握更多的知識,才能夠很好地駕馭它們,任何一點小的失誤,都可能影響到設備的正常運行,從而影響臨床的診斷和治療,嚴重時可能會造成誤診、漏診,甚至威脅到患者的生命安全。因此,對醫護人員進行醫療設備的操作規程、安全使用及維護技能的培訓和考核,也是醫學工程部門必須強化的一項重要職能。首先,要加強對醫護人員進行使用操作技能培訓和考核,促使他們在使用儀器設備時能嚴格按章操作,保證儀器設備的使用環境條件,盡量避免因設備操作不當引起的不良后果的發生。其次,要加強對醫護人員進行日常維護保養知識的培訓和考核,提高醫護人員對設備儀器日常維護保養重要性的認識,增強其責任心,及時有效地開展維護保養工作,避免因日常維護保養不到位而造成儀器設備的損壞。再次,要加強對醫護人員進行質量安全方面的政策法規教育,使他們對儀器設備的計量及質量控制檢測的重要性有更清醒的認識,這樣才能使他們更好地配合醫學工程人員對設備開展計量檢定和質量控制檢測工作,保證醫療儀器設備使用的安全有效。

2.5強化學習職能,努力提高醫學工程人員自身素質

學科發展的關鍵在于自身素質的提高,醫學工程技術人員應走在醫療領域的前沿,及時掌握醫療設備的發展趨勢和動態。今后醫療設備將朝著數字化、智能化、集成化、網絡化方向發展,這就需要醫學工程技術人員積極參加在職學習和培訓,不斷更新觀念,改善知識結構,提高專業技術水平;同時,醫學工程部門要進一步完善內部建設機制,優化人才隊伍結構,積極引進優秀人才,建立一支德才兼備、掌握高科技專業知識、具有嚴謹科學作風、會管理、梯次合理的人才隊伍,積極主動作為,用實際行動和工作業績來改善和塑造自身形象,確立醫學工程部門在醫院不可或缺的地位和作用。

篇2

本刊訊(通訊員 何 雷)5月14日,由第三軍醫大學西南醫院牽頭獲得的國家973計劃“活細胞的THz波無標記檢測技術基礎研究”項目啟動會召開。作為國家重大基礎科研課題,項目共獲國家科研基金2000萬元,這也是西南醫院牽頭進行的第四項973科研課題。

檢驗醫學領域迎來革命性創新機遇

很多患者覺得身體不舒服,前往醫院就診,要準確找到病因可能需要做很多檢查,如X光、CT、核磁共振等一系列放射檢查,B超、彩超等超聲檢查,還有抽血化驗、病理學活檢等等。或許,在將來的一天,我們只需要用一種檢查就能快速準確地給出結論。

據介紹,基礎科學的飛速發展,極大地促進了醫學疾病診斷水平的提高,使現在的疾病診斷越來越迅速準確,診斷成本越來越低廉。盡管如此,目前患者要確診大部分疾病仍然需要通過醫學檢查才能確診,并有較長的等待結果時間。為了準確查出各類常見、不常見、甚至罕見疾病,西南醫院僅檢驗科就有1000多個檢驗項目。

“放射科、檢驗科、超聲科、病理科??????這么多的檢測手段、檢驗人員、設備試劑,都是對患者有用且必須的,但是很多科學家都有一個科幻的想法,我們能不能讓檢驗更簡單更一站式?”西南醫院檢驗科主任、973項目首席科學家府偉靈形象地比喻,如果說一站式檢驗是科幻電影,現在檢驗醫學科學家做的事情,就是為這個科幻情節找理論依據和前提條件,先要有想法,未來才會有實現的可能。

本次973太赫茲技術研究項目,就是期望通過物理學、醫學等各學科頂尖科學家的共同攻關,讓科學家在生物醫學微觀和宏觀領域最終解釋各種生命現象,為疾病的診斷、治療、評估、監測和預警及后續藥物設計、研發、生產和評價帶來革命性改變。

太赫茲波技術在醫學上應用廣泛

“相較于現有醫學成像技術,太赫茲波光譜成像技術具有更獨特、更適用的物理特征?!备畟レ`說,由于太赫茲波具有反應物質結構與性質的指紋特性,并且光子能量低,遠遠小于X射線能量,不會對生物大分子、生物細胞和組織產生有害電離,特別適合于對生物組織進行活體檢查。

醫院檢驗科教授黃慶介紹,與現有X光、核磁共振等檢測手段相比,太赫茲波的最大特點是能將檢測細致到細胞級別。

“如果把X光等檢測方法和太赫茲比作不同型號的相機,那么太赫茲就具有像素更高、快門速度更快的優勢?!秉S慶說,像素更高是由于太赫茲的頻率很高,所以其空間分辨率也很高。又由于它發出脈沖的時間很短(皮秒量級),所以具有很高的時間分辨率,時間分辨率就相當于快門速度。

另外,太赫茲與X光等現有檢測方式相比,輻射劑量幾乎為零,對人體傷害非常小。

據介紹,太赫茲波是頻率在0.1~10THz的電磁波,處于宏觀電子學向微觀光子學過渡的波段。國際上,太赫茲生物醫學研究隨著歐盟2000年設立的國際聯合項目“THz-Bridge”正式啟動。美國政府將太赫茲技術評為“改變未來世界的十大技術”之一,日本將其列為“國家支柱十大重點戰略目標”之首,并將生物醫學應用列為主要方向之一,歐洲也連續10年將生物醫學應用作為首要研究方向。

太赫茲-檢測醫學(THz-LabMed)是當前受到極大重視,涉及醫學、生物學、生物醫學工程學、物理學、光學、計算機學、信息和材料等多學科的綜合交叉前沿學科,是以生物醫學實驗診斷應用為目的,采用太赫茲(THz)波技術無標記、無損檢測生物大分子、生物細胞和組織醫學和物理交叉的新學科?;赥Hz波技術的THz-LabMed是我國與全球同步開展的THz-BioMed研究領域,可以從新的視角為檢驗醫學提供分子、細胞和組織偵檢的革命性科學手段,形成檢驗醫學優勢新學科和產業基礎。

以乳腺癌和神經膠質瘤為初期研究對象

府偉靈表示,目前規劃的初步研究中,期望能夠獲得以乳腺癌和神經膠質瘤的太赫茲波譜規律,建成模式數據庫,讓太赫茲活細胞檢測技術走向臨床。

篇3

[關鍵詞] 力學 學科 發展報告

福建省力學學科在廣大的省內力學工作者長期不懈努力下,通過與國內外同行廣泛交流、相互學習,以及不斷從國內外引進優秀力學人才,近十年來取得不少成果。目前,雖然總體上在國內還無法處于先進行列,但在某些領域的一些研究成果達到了國內甚至國際先進水準,國內影響也日益增加。但是,福建畢竟是力學小省,從事力學研究的隊伍很小,真正從事力學理論、基礎研究的人才更少。迄今,我省高校還沒有設置力學專業,更沒有力學或航空航天學院。正因為我們沒有強大的力學研究隊伍,我們的研究成果不夠系統,也無法形成國內外影響力大的研究團隊。力學是目前世界上發展非??斓囊粋€學科,是眾多工程技術的基礎,其研究成果被廣泛應用于先進的航天航空技術、艦船技術、兵器技術、尖端的建筑領域、車輛技術、機器人技術、高速精密機床、電子技術、防震救災等等。力學學科強的省份,其工程技術各個領域普遍也強。由于經濟實力有限,福建省同其他一些省市一樣,對力學等基礎學科重視不夠,導致工程技術人才隊伍總體素質不是很高,研究后勁不足。除了高層建筑、大型橋梁、水庫等事關國計民生的大項目外,很少見到生產企業借助力學尋找疑難問題的答案,或開發設計新產品。為此,總結力學學科發展,不僅僅是有助于本學科更快更好的發展,更重要的是促進力學對工業進步的推動作用。此外,還可以幫助年輕的力學工作者、力學愛好者,以及政府有關部門,更快更好了解我省乃至全世界力學發展動態、應用與存在的問題,促進力學人才隊伍的發展壯大。雖然我省力學人才數量與培養機制在國內處于劣勢,然而,力學學科也同其他學科一樣, 有能力、也期待在海西建設中發揮更大的作用、得到更快的發展。

目前,我省力學學科研究領域主要集中固體力學、流體力學、計算力學、機械動力學與控制、細觀力學、實驗力學、結構力學等方面。研究內容既有理論方面的,也有許多工程實際應用的,還有關于力學教育的。本學科報告將根據上述7個領域展開。

1固體力學

固體力學研究變形固體在外界因素(如載荷、溫度、濕度等)作用下受力、變形、流動、斷裂等。包括桿件及理想彈性體變形和破壞;變形固體塑性變形與外力的關系;細長桿穩定性理論;桿系結構、薄板殼以及它們的組合體;裂紋尖端應力場、應變場以及裂紋擴展規律。復合材料構件的力學性能、變形規律和設計準則。固體力學不但促進了近代土木建筑、機械制造和航空航天等工業的進步和繁榮,而且為廣泛的自然科學提供了范例或理論基礎[1-2]。大到橋梁、航天航空器、核動力結構,小到計算機芯片、生物組織以及近年來高速發展的微/納米機械等都需要借助固體力學理論和方法。

1.1 我省固體力學研究現狀

1.1.1 斷裂與疲勞方向

通過三點彎曲疲勞試驗,分別跟蹤監測了40Cr鋼及它的兩種表面處理試樣疲勞損傷過程,得出了40Cr鋼經過兩種表面處理對其疲勞裂紋萌生壽命有顯著影響的結果,提出了對疲勞裂紋萌生壽命測量的一種新方法[3]。根據材料對稱循環持久極限和靜載強度極限,導出任意循環特征下材料持久極限的估算公式。通過非線性有限元方法對橡膠―鋼球支座的橡膠層與鋼球粘結界面上及橡膠中間層在扭轉載荷作用下存在中心裂紋和環形邊緣裂紋的情況進行了數值模擬,給出撕裂能與裂紋尺寸、載荷和橡膠層厚度的關系曲線[4]。針對抽油機井常用油管在循環載荷作用下的疲勞斷裂問題進行了理論與實驗研究。在實測油管載荷譜與應變譜的基礎上應用彈塑性有限元法計算油管螺紋內的應力應變場,并進行了有關的疲勞實驗,以得到油管的疲勞強度。

* 第一執筆人:嚴世榕,福州大學車輛振動與電子控制研究所所長、教授。

1.1.2 板殼、薄壁桿件及復合材料方向

利用群論方法提出周期區域的分片正交多項式連續函數,在周期區域內利用正交分片多項式逼近位移函數可以大大地降低計算量[5]。推導了一般各向異性板彎曲的積分方程,運用加權殘數配點法求解了正交各向異性板彎曲的積分方程。提出了兩種新的近似基本解加權雙三角級數廣義各向同性板解析形式的基本解和加權雙三角級數的疊加。根據Timoshenko幾何變形假設和Boltzmann疊加原理,推導出控制損傷粘彈性Timoshenko中厚板的非線性動力方程以及簡化的Galerkin截斷方程組;然后利用非線性動力系統中的數值方法求解了簡化方程組[6]。假設翹曲位移及切向位移的分布函數,考慮剪切變形的影響,利用最小勢能原理建立了單位均布畸變荷載作用下的薄壁桿件畸變角微分方程[7]。采用一般解法對該畸變角微分方程進行求解,并推導求解的初參數法。采用加權余量法提出一個簡支工字型梁在橫向荷載作用下臨界荷載的計算公式;利用這個式子算出的值與試驗結果以及其它數值方法等得到的結果吻合得很好,說明文獻[7]提出的公式能迅速、有效地計算薄壁桿件的橫向臨界荷載。以均布荷載下的拋物線鋼管拱為研究對象,在考慮雙重非線性的有限元分析基礎上,提出純壓鋼管拱穩定臨界荷載計算的等效柱法[8]。提出了基于桿件連續分布的結構優化方法,優化結果不僅更接近理論解,而且克服了理論解的非均勻各向異性材料的制造困難,也完全避免了各種數值拓撲優化普遍具有的數值不穩定問題[9]。

1.1.3 彈性動力學方向

分析了一般粘彈結構特征值問題的特點,建立了一般粘彈結構的模態分析方法。與粘彈結構已有的模態分析方法相比,該方法通用于更一般的粘彈結構,在形式上不涉及粘彈本構關系項,并只涉及一種模態向量[10]。導出了時間步長內計算擾動的確定方法,并進一步采用同步計算消除計算擾動效應和后續步計算消除計算擾動效應,兩種途徑抵消其不利影響?;贒istorted-Born Iterative方法,提出了一種求解彈性波強非線性逆散射問題的迭代方法。在數值模擬運算時利用矩陣法進行離散處理,并采用正則化原理避免求解病態矩陣方程。應用多重尺度法推得從平方非線性振動系統勢能井逃逸的時間。近似勢能法用于克服非線性帶來的困難。推導了系統的運動學、動力學方程。分析表明,結合系統動量及動量矩守恒關系得到的系統廣義Jacobi關系為系統慣性參數的非線性函數。證明了借助于增廣變量法可以將增廣廣義Jacobi矩陣表示為一組適當選擇的慣性參數的線性函數。在此基礎上,給出了系統參數未知時由空間機械臂末端慣性空間期望軌跡產生機械臂關節鉸期望角速度、角加速度的增廣自適應控制算法。在高速公路剛架拱實橋動測及單車荷載作用研究基礎上,建立多車荷載激振模型,發展了研究剛架拱橋車激共振特性的可視化仿真方法,探討剛架拱橋在高速多車荷載作用下的共振條件,分析車距、車速和車數對豎向瞬態振動峰值的影響,編制運行多車荷載下振動仿真分析可視化程序。提出了基于壓力傳感器的汽車重心實時監測機理的力學模型。利用該模型能實時監測汽車的整車重量、重心位置,提供安全裝載和安全車速監測與報警,可為汽車安全系統提供可靠的重心計算力學模型,為研制汽車重心實時監測系統提供了必要參數與依據。論述數值計算中新的小波基無單元方法,即用小波基函數取代傳統無單元方法中的冪級數基之后,使無單元法具有了小波變換的局域化和多分辨率等優良特性,并能有效地克服有限單元法的網格敏感性和單元之間應力不連續現象,從而不但拓展和豐富了無單元法的理論內容,也為其工程應用開辟了新的途徑[11]。

1.1.4 工程應用

推導了T型截面梁的彎矩-軸力-曲率關系,提出了分析大偏心體外預應力筋的應力增量和梁彎曲性能的通用方法。比較荷載作用前后,轉向座和錨具的變形差,計算出體外筋的應變和應力。因此這一方法考慮了體外筋的變形協調條件,同時自動地考慮了體外筋偏心距的損失。以B樣條函數結合配點法直接求解框剪間有限個作用力與力矩,導出的遞推公式對任意水平荷載可直接應用。采用動力特解邊界元法在時域內求解壩-水-地基動力相互作用問題特性,研究了壩體、地基和系統阻尼對壩體的動力特性、動水壓力、動力放大系數及穩定系數的影響。提出了一種求解柔性多體系統控制方程數值方法,在每一時間步,利用Newmark-β直接積分法計算迭代初值,基于控制方程及約束方程的泰勒展開,推導出Newton-Raphson迭代公式,對位移及拉格朗日乘子進行修正。引用Blajer提出的違約修正方法對數值積分過程中約束方程的違約進行修正。提出了地震作用下摩擦耗能支撐參數優化的一種新的數學模型,在給定的幾條地震波作用下,在滿足框架的規范層間位移角限值要求下,框架各層安裝的耗能支撐剛度之和最小,從而實現安裝較少的耗能裝置而能達到相同的抗震要求[16]。

1.2 與國內外發展現狀的對比與不足

整體上,我省還沒有建立起幾個系統、穩定的固體力學研究方向。與國內外比較尚處于相對落后的研究水平。許多研究領域尚處于空白。系統性、原創性研究成果就更少了。

1.3 國內外固體力學發展趨勢預測

固體力學的研究對象向跨尺度和復雜性方向發展;研究手段以跨學科、交叉性和系統性為特色。 其基本理論以研究力與熱、電、磁、聲、光、化學及生命領域的相互作用,實現從原子、分子的微觀結構到納米結構、細觀顯微結構,直至宏觀結構的多尺度關聯理論框架的建立。固體力學可以將地震、邊坡失穩、泥石流、礦井崩塌等自然災害提煉成為具有群體缺陷、裂紋和裂隙的不連續、非均勻介質的力學演化過程,預測和防范突發災害的發生。固體力學在陸地和海洋石油勘探采集和輸運、核電技術、風能技術、高壩技術和高功率水力發電技術、大型工程結構的選址等重大工程中也將發揮愈來愈重要的作用。集傳感功能和驅動功能為一體的智能材料和結構蘊含著許多與傳統領域不同的力學問題。新型材料與結構的多場耦合力學,包括力-電-磁-熱耦合場基礎理論與體系、破壞理論、智能結構性能等是固體力學領域充滿生機的研究方向。 利用生物學和生物技術來設計材料與器件將極大地沖擊整個工程界、生物界和醫學界。

1.4 我省固體力學發展對策

目前普遍強調工程應用的大社會背景對力學這門基礎性學科的發展是極為不利的。鼓勵自由探索,促進系統性、原創性、基礎性的研究工作是促進力學學科發展的最重要基礎工作。主要體現在如下幾個方面:

(1)固體力學作為影響廣泛的重要基礎學科,需要長期、穩定地投入。自由探索和基礎研究是科學新思想、新理論和新方法的重要源泉。需要以全面發展的觀點長期穩定地處理好基礎研究、應用基礎研究和工程需求的關系,營造在各方面都鼓勵創新的環境。

(2)人才培養,特別是充分發揮優秀人才作用是力學學科發展的重要源泉。建立有利于人才培養的長期、公正、公平、合理的科研成果和科技人才評價體系,力學學科的科學研究和人才培養尤其要避免急功近利。各高校在力學學科的建設上不能以其能否直接解決工程實際問題為取舍的依據,而要以現有人才和研究基礎為依據。穩定、扎實的力學學科人才培養可以直接惠及眾多相關學科的發展。

(3)從固體力學學科的性質、現狀和發展趨勢,以及國家需求來看,目前的重要科學問題和前沿領域主要有:微納米力學、多尺度力學與跨尺度關聯和計算、新材料與結構的多場耦合力學、生物材料與仿生材料力學、科學與工程計算與軟件、儀器設備研制及實驗力學新技術與新表征方法。國家建設需求的重要支撐點和應用發展方向主要有:固體強度與破壞力學、計算力學軟件、固體力學在國家安全以及航空航天工程中的應用、大型工程結構與工業裝備的力學問題、爆炸與沖擊力學、環境與災害關鍵力學問題等。

2流體力學

2.1 計算流體力學

流體力學是力學的一個分支,它主要研究流體的運動以及流體和其它介質間相互作用和流動的規律。流體涉及面廣,它可以是氣、水,也可以是油或其它流變物質。流體力學在氣象、水文、石油勘探、船舶、飛行器和工業機械等領域均有廣泛應用。流體力學數學上的描述是著名的Navier-Stokes方程及其各種變化。

空氣動力學是流體力學針對空氣運動問題的一個分支,也是流體力學研究的一個主要內容。20世紀初,飛機的出現極大地促進了空氣動力學的發展。航空器的研究需要了解飛行器周圍的壓力分布、飛行器的受力狀況和阻力等問題,這就促進了流體力學在實驗和理論分析方面的發展。20世紀中后期,流體力學開始和其他學科互相交叉和滲透,形成了新的交學科,如物理-化學流體動力學、磁流體力學等。

流體力學研究的手段主要有三:實驗,理論分析,數值計算。理論分析是根據流體力學基本方程,通過數學方法進行分析,得出各種定量和定性結果。由于流體運動的復雜性,實驗方法在流體力學中占有重要的地位。現代流體力學就是在純理論的古典流體力學與偏重實驗的古典水力學結合后才蓬勃發展起來的。實驗對于驗證流體運動的基本規律,測定經驗參數,解釋物理現象均有重要意義。

隨著計算機技術和各種高效計算方法的發展,使許多原來無法用理論分析或實驗研究的復雜流體問題有了求得數值解的可能性,形成了“計算流體力學”學科。從20世紀60年代起,在飛行器和其它相關工程的設計中,開始大量采用數值模擬,使得數值模擬成為與實驗和理論分析相輔相成的一個重要研究手段,并正在成為流體力學的主要發展方向。數值模擬方法特點如下:

①給出流體運動區域內的離散解,而不是一般理論分析方法所關注的解析解;

②它的發展與計算機技術的發展直接相關,因為復雜的流動問題要求大計算量的運算;

③若物理問題的數學模型是正確的,則可在較廣泛的流動參數(如馬赫數、雷諾數、氣體性質、模型尺度等)范圍內研究流體力學問題,且能給出流場參數的定量結果。

廈門大學在計算流體力學學科開展了多方面的研究,其主要研究力量分布在數學、海洋、化學、材料、物理機電等院系,并建立了多套高水平的大型計算服務器。特別值得一提的工作是:數學科學學院在可壓和不可壓粘性流體數學模型的理論探索和高階數值模擬的研究中取得了具有國際水平的成果,豐富和發展了下面幾個重要方法:

2.1.1 譜方法(Spectral method)[17-19]。該方法是一類高階方法,它利用整體高階多項式逼近偏微分方程的解。它主要有兩種形式:從弱形式出發的Galerkin譜方法和從強形式出發的配點法,它們都可以認為是加權殘差法的特殊形式。其中配點方法更像差分法,它要求在配置點上滿足原方程,與差分法不同的是:它用高階多項式的準確求導代替了導數的差分逼近。Galerkin譜方法與有限元方法在原理上類似,都是先將偏微分方程定解問題轉化成與之等價的變分形式,然后通過試探函數和檢驗函數的選取來逼近解,它們的主要不同在于試探函數和檢驗函數的選取以及高維情況下基函數的構造。譜方法的收斂速度取決于解的正則度,當解無限光滑時可以達到指數階收斂,即比任何代數階的收斂速度都快,這是譜方法相比差分法和有限元法的一個主要優點。

2.1.2 擬譜法和譜元法[20-21]。擬譜方法(Pseudo-spectral method)是一類準譜方法,可以通過從弱形式出發的廣義Galerkin譜方法構造,也可以由強形式出發的配點法得到。兩者在某些特殊情形下是等價的,但對絕大多數問題,配點法無法導出簡潔的弱形式,導致理論分析十分困難?,F在配點法正漸漸淡出研究人員的視線?;趶V義Galerkin方法的擬譜方法的構造分兩步:首先構造問題的Galerkin譜方法,然后利用高精度Gauss型數值積分近似弱形式中的積分。有別于標準譜方法中使用的正交多項式基,在擬譜方法中,基函數通常選擇基于數值積分的Lagrange多項式基,這給計算,尤其是非線性問題的計算帶來了很大的便利。由于Gauss型數值積分的高精度,在大多數情形下擬譜方法的收斂速度與譜方法相同。傳統意義下的譜方法對于復雜區域的處理能力極其有限,這限制了它的應用范圍。20世紀80年展起來的譜元法(spectral element method)很好地解決了這個問題。譜元法結合了譜方法和有限元法各自的優點,既能處理復雜的計算區域,又有譜方法的高精度,它在不可壓流體的計算中取得了很大的成功,如今已是計算流體中最常用的方法之一。譜元法與hp-有限元方法很相似,但兩者在發展的初期有許多不同點,hp-有限元使用的多項式階數不高,所使用的基函數也與譜元法不一樣。不過隨著兩類方法的發展,它們呈現出越來越多的共同點,有些學者已把兩類方法歸結為同一種方法。由于譜方法還具有低耗散,低色散的優點,如今它已成為湍流數值模擬的主要方法。

2.1.3 湍流大渦模擬(Large eddy simulation,LES) [20-22]。 自然界中的流體運動主要有兩種形式,即層流(laminar) 和湍流(turbulence),層流是指流動時流線相互平行的流動,而湍流則是無規則脈動的,有強的渦旋和摻混性。目前一般的看法是:無論是層流還是湍流,它們都服從Navier-Stokes (NS)方程。由于湍流運動特征尺度的多樣性,一般來說,直接數值模擬(DNS)僅局限于湍流機理的基礎理論研究和一些較簡單的問題。湍流大渦模擬(LES)是介于DNS和雷諾平均NS(RANS) 之間的一個折衷方法。LES需要的網格點數比DNS大大減少,這使得它能夠應用于許多實際工程計算中。LES僅計算大尺度部分,而亞格子尺度運動(SGS)通過附加模型實現。目前廣泛使用的SGS模型有1963年Smagorinsky 提出的“渦粘性” 模型及其變種,如“尺度相似性” 模型,“動力學模型”,“代數渦粘性”模型和“重正化群”模型等,這些模型均在某些特定的情形和適當的假設下適用, 且跟所選擇的數值方法相關。較新的LES模型包括速度估計模型以及無(顯式)模型的單調積分LES(MILES)和譜消去粘性(Spectral vanishing viscosity, 即SVV)LES。MILES的基本思想是借助非線性高頻限制器來限制高頻波段上的能量振蕩,可以起到與顯式SGS模型同樣的效果。而SVV-LES是在譜元法框架內提出的,其基本思想是通過引入線性高頻粘性項來抑制可解尺度量在截斷頻率附件的震蕩。與其它LES方法相比,SVV-LES簡單且無附加計算量。

3計算力學

20世紀50年代,隨著計算機的發展,計算力學這個力學和科學計算的交叉學科得到了快速發展,特別是60年代后有限元法及其相應軟件產業的迅猛發展,使得計算力學這個新興學科迅速滲透到土木、水利、機械、航空、電子及生命科學等各個領域,成為計算機輔助設計(CAE)的重要核心內容,也使得力學這個傳統的學科煥發了新的強盛的生命力。在當今科學研究和工程實踐中, 科學計算已經成為與科學理論、科學實驗并行的重要科學方法。2006年美國自然科學基金委員會了《基于數值模擬的工程科學》的研究報告,明確指出計算力學和數值模擬在工程科學發展中的重要地位。

近年來我省科技工作者在計算力學及其工程應用方面開展了積極的研究工作,取得了一定的科技成果。在計算力學方法方面,我省學者系統地發展了土木水利、機械、航空航天等領域常見的梁板殼結構的高效無網格分析方法,該方法采用整體坐標建立板殼無網格近似,不僅簡便直接,適用于任意復雜形狀的殼體,并且可以避免參數變換,大大提高了計算效率。同時該方法利用穩定節點積分構造離散方程,兼顧了穩定、效率和精度,為快速準確地分析和設計這種類型結構提供了一種有效的數值工具。同時,針對福建省暴雨天氣常見的土質邊坡失穩而產生的滑坡問題,建立了暴雨條件下土質邊坡突發失穩的大變形高效無網格模擬法,該方法可有效模擬失穩剪切帶所引發的邊坡非線性大變形損傷破壞全過程,實現邊坡失穩的高效無網格法全過程仿真分析,可為暴雨條件下邊坡工程的設計施工、滑坡災害的預報、預防和加固處理提供理論依據和指導,有重要的理論和實際工程意義。另外,在雜交元研究方面提出了基于基本變形模式的正交化單元構造方法,不僅概念明晰,而且由于不依賴于材料參數而大大提高了計算效率。并且,在拓撲優化方面提出了類桁架結構連續體的拓撲優化方法,有效地避免了棋盤格問題。這些計算力學方法所取得的研究成果得到了國內外同行的引用和認可。

在工程應用方面,我省學者對汽車減震及管道密封橡膠構件的受力斷裂行為進行了非線性有限元和無網格分析和模擬,提出了合理的設計方案。對于大型土木結構例如大跨橋梁、大壩與深水進水塔以及深埋特長隧洞等結構,應用有限元法進行了動力抗震抗風分析,取得了滿意的結果,提供了有效的工程服務。另外,應用從微觀第一原理到宏觀有限元無網格計算的多尺度高性能計算方法,成功地進行了材料微觀設計。

雖然我省計算力學研究與應用已經得到快速發展,但在國內仍然處于相對落后的地位,表現在原創性研究偏少,參與解決工程實際問題不夠。當前我省相關科研工作者應抓住海西發展的大好時機加大科研力度,爭取在高性能計算方法、大規模工程問題數值仿真分析、災害條件下工程機構性能的計算模擬及評估預防、先進的汽車仿真方法與應用以及高性能材料計算設計等方面取得新的突破,同時密切聯系實際,切實提高解決海西建設中的工程技術問題的能力。

4機械動力學與控制

近年來,福州大學、廈門大學、福建農林大學、華僑大學等在機械動力學與控制方面做了不少工作。我省的機械動力學與控制在以下幾個方面的研究在國內具有較鮮明的特色和一定的影響力。

4.1 機器人系統動力學與控制問題的研究

福州大學在單臂、多臂、柔性臂空間機器人系統的運動學規劃、動力學分析及控制系統設計等方面進行了系統的研究工作。他們研究了載體姿態無擾、末端爪手障礙規避、機械臂關節受限等不同目標要求下的多種運動學規劃方法。在控制系統設計方面,分別給出了單、雙臂空間機器人關節空間軌跡及末端爪手慣性空間軌跡跟蹤的非線性反饋控制、變結構滑??刂?、Terminal滑??刂?、模糊變結構控制、魯棒控制、自適應控制、復合自適應控制、終端滑模自適應控制、魯棒自適應混合控制、自適應Backstepping滑模控制、自適應模糊滑??刂?、基于模糊神經網絡的動力學控制、基于速度濾波器的魯棒控制、模糊小波神經網絡控制、模糊基函數自適應神經網絡控制、基于RBF神經網絡的自適應補償控制、模糊神經網絡自學習控制、神經網絡前饋控制及閉鏈雙臂空間機器人基于內力優化配置原則的滑模變結構控制、RBF神經網絡滑模補償控制等一系列相關的控制方案[23-35]。在柔性臂空間機器人控制系統設計方面,給出了各類期望運動的Terminal滑??刂啤ackstepping反演控制、于奇異攝動法的Backstepping反演控制、關節運動自適應控制及柔性振動的快速實時抑制、運動模糊控制及柔性振動主動抑制、運動魯棒跟蹤控制及柔性振動主動抑制等多種控制方案。其成果以150余篇論文形式,在國內外學術期刊及會議上發表與交流。此外,福州大學還開展了爬墻機器人安全系統的控制研究,對其提出了變結構控制方法、模糊控制方法等[36-37]。

4.2 機械系統動力學研究

福州大學針對立井提升系統動力學與控制、攤鋪機和振動壓路機動力學分析、以及汽車底盤動力學控制[38-42]等方面進行了系列研究,分析了影響提升設備動力學特性的有關結構參數、運動參數,提出了減少其工作過程振動的變結構控制與模糊控制方法;針對高等級道路建設中重要設備――攤鋪機的國產化改造與開發設計,系統研究了其工作原理、動力學特性等,建立了相關的動力學模型,確定了影響整機正常工作的動力學特性及其影響因素;為消化吸收并趕超國外先進的汽車電子控制技術,開展了系統的汽車底盤總成的動力學與電子控制技術的系列研究,其研究成果有助于相關新產品的問世或改進。福州大學還對軸向運動弦線橫向振動控制進行了多種控制方法的研究[43-46],其成果可用于指導相應產品的開發設計。

4.3 研究不足與展望

迄今,還沒有系統地將機械動力學及其控制的研究成果應用于產品開發與產品的更新換代中。目前,國內急需高精尖機床的開發技術與動態分析優化技術等。我省目前是工程機械大省,但還不是強省,進一步提高相關產品性能與可靠性,仍然需要開展大量的工作。我省的工程機械產品的更新換代(如集成優化、計算機智能控制等)、工程機械新產品開發設計與分析、汽車整車集成優化與設計分析、新型汽車電子控制系統開發設計、高速設備性能分析與改進、機械設備計算機智能故障診斷、微型機械產品開發設計等等,均以力學的分析研究為其成功的關鍵。

為改變這個落后局面,尤其是海西經濟建設中更好發揮力學的作用,需要政府、企業、高校等投入更多人力物力,更積極主動地對重要機械產品、大批量生產的機械產品與汽車等開展機械動力學分析研究,對相關進口軟件進行二次開發或早日開發出自己的專用機械動力學分析軟件,以提高企業的產品開發能力與開發速度。同時增強完善實驗能力與手段,實現對重要機械產品開展動力學特性實驗,以確保產品性能穩定與可靠性。積極利用國內外的動力學研究成果,開展重要設備、大型設備、危險設施或設備的動態故障診斷研究,確保這些設備、設施安全可靠高效地運行。

5細觀力學

細觀力學是固體力學的一大分支,即采用連續介質力學方法分析具有細觀結構的材料的力學問題,是固體力學與材料科學的交叉學科,其發展對固體力學研究層次的深入以及對材料科學規律的定量化表達都有重要意義。

前幾年我省在細觀力學方面的研究進展不多,近幾年來才有所發展。研究主要集中在PZT和PLZT鐵電陶瓷的電致疲勞機理,微觀電疇原位觀測,應力、高溫、腐蝕性環境介質等耦合作用下固體材料的微結構和變形斷裂行為的演變規律等幾個方向:

①根據鐵電材料自發應變與自發極化不唯一性,以及晶界的不同取向,提出自發極化過程中材料能量密度是變形梯度和電位移向量的非凸函數,從能量角度出發,導出鐵電鐵彈材料的自極化穩定構形所應滿足的必要條件,利用兩電疇的Gibbs 自由能之差作為疇變方向的判據,由要求板的Gibbs 函數最小來確定疇變量的大小。②進行了PZT 鐵電陶瓷四點彎曲試樣在交變力、交變電場及機電耦合疲勞作用前后的微裂紋和電疇的觀察,獲得裂紋擴展與極化方向,加載類型之間關系。③發展了一種原位XRD觀測電疇系統,對電疲勞過程中PLZT鐵電陶瓷試樣表面X射線衍射峰隨疲勞次數的變化進行了原位觀測。同時,利用SEM觀察了疲勞前后試樣的斷口形貌,并系統地進行了電場特征和溫度對PLZT試樣電疲勞性能影響的實驗觀測。④基于Raman散射原理,建立原位觀測電疇翻轉的Raman測試系統,對三種不同預極化處理的PLZT試樣在靜電場作用、電循環作用下的裂紋尖端的疇變行為進行了系統研究;通過原位Raman觀測PLZT材料在準同型相界附近的相變過程。⑤系統進行牛皮質骨在拉伸、剪切、撕裂三種載荷類型下的裂紋起裂韌性研究。研究了皮質骨中礦物成分對皮質骨動態粘彈性性能的影響,發現皮質骨中的礦物質成分存在將降低膠原纖維的可動性,增強材料的粘彈性特性。⑥對牙齒等生物復合材料的性能進行了研究,發現牙齒具有很明顯的壓電效應,壓電性能與濕度和細管的分布密切相關。⑦研究在不同保護氣氛中,不同退火溫度對碳化硅纖維的材料斷裂強度的影響,揭示了微結構的演變和宏觀性能之間的相互關系。2004年3月29~31日,張穎教授于廈門組織召開了全國細觀力學會議,清華大學,中科院力學所,浙江大學,同濟大學,復旦大學等國內知名高校和研究所的眾多教授、專家參加了本次會議。

細觀力學和微納米力學在全球、全國范圍內正在迅速擴展和深入,具有多學科交叉的強烈特征,國際競爭非常激烈。我省學者在細觀力學方面和微納米力學方面的投入較少,今后應該在非線性,動態,多物理場,跨尺度、尺度效應,微納米力學和器件等方面加大研究投入。

6實驗力學

1991年,福建省力學學會成立了實驗力學專業委員會。福建省力學學會實驗力學專業委員掛靠福州大學土木工程學院。

為更好開展實驗力學工作,經過多年多方面努力,我省實驗力學條件不斷改善。2006年6月福州大學“工程結構福建省高校重點實驗室”被批準成立,2008年與臺灣大學聯合成立了“福建省海峽兩岸地震工程研究中心”,2008年“土木工程本科實驗教學中心”獲批“福建省本科實驗教學示范中心”。2008年福州大學土木工程學院實驗中心擁有土木綜合實驗館、工程結構實驗館、巖土及地下工程實驗館、水利工程實驗館等場館,總面積超過1.7萬多平米,現有儀器設備總價值超過6000萬元。其中裝備的美國MTS大型結構加載系統價值超過1280萬元,共有7個作動器,具備靜載全過程、疲勞、多維擬靜力和多維擬動力試驗功能。此外,正在建設的“福州大學地震模擬振動臺三臺陣系統”(價值2500余萬元)包括三個振動臺,其中中間為固定的4m×4m水平三自由度振動臺,兩邊為2.5m×2.5m可移動的水平三自由度振動臺各一個,三個臺在12m32m的基坑內呈一直線布置,其中邊臺最大可移動距離10m,可實現多臺同步或異步地震輸入,拓展了地震模擬實驗的空間,該臺陣系統將于2009年12月全面建成投入使用。該臺陣系統的建成將使福州大學成為目前世界上少數幾個擁有地震模擬振動臺臺陣的單位之一。

7結構力學

結構力學是土木工程專業的專業基礎課,涉及建筑工程、結構工程、道路工程、橋隧工程、水利工程及地下工程等。一方面它以高等數學、理論力學、材料力學等課程為基礎,另一方面,它又成為鋼結構、鋼筋混凝土結構、土力學與地基基礎、結構抗震等專業課程的基礎,在基礎課和專業課的學習中起著承前啟后的關鍵作用。

為增強基礎教育并提高結構力學在工程中的應用,自上世紀90年代初,我省高校興起結構力學教學法研究熱潮,把結構力學教學改革推向新的高度,對教學內容進行了模塊結構改革,將結構力學教學內容歸納為基礎型、擴展型和研究型模塊。使用高等教育出版社出版的由龍馭球、李廉錕等教授主編的統編教材的同時,在結構動力學部分,融入結構抗風、抗震、車激振動等學科前沿知識,增加了隔震結構動力反應的內容,補充和修正了傳統教學內容中關于“伴生自由振動”的相關結論,實現了與學生原有知識的有機融合;有兩項重要教研成果:階梯形變截面梁“圖乘貼補簡化”計算方法和剛架拱“考慮二階效應影響線”問題引入課堂討論,更新了教學內容。

上世紀90年代末,我省結構力學平面教材和多媒體立體化教材建設取得突破,先后出版了《結構力學解題與思考》(陳,中國礦業大學出版社,1999。2007年該書由煤炭工業出版社修訂再版)、《廣義結構力學及其工程應用》(陳,中國鐵道出版社,2003)、《結構力學》(祁皚參編,清華大學出版社,2006)等。

正如王光遠院士所指出,結構力學學科呈現出“從狹義到廣義,從被動到主動,從確定到不確定,并與結構工程滲透融合”的發展趨勢。我國在力學領域的理論研究已位居世界先進行列,但在應用軟件的研制方面落后了一大步,具有自主知識產權的應用軟件寥若晨星。結構力學作為專業基礎教育與國際先進水平接軌,體現現代結構力學教育思想;完善教學資源庫建設,加強國際教學交流是當務之急。根據工科專業特點,面向能力培養、面向工程實踐、面向信息時代、面向一流水準,應是我省結構力學研究與教學所追求的目標。

參考文獻:

[1] 國家自然科學基金委員會數學物理科學部. 力學學科發展研究報告[M].北京: 科學出版社, 2007.

[2] 中國科學技術協會. 2006-2007力學學科發展報告[M]. 北京: 中國科學技術出版社, 2007.

[3] 吳維青. 40Cr鋼疲勞裂紋萌生壽命的測量[J]. 應用力學學報, 2003, 20(3): 141-144.

[4] 楊曉翔, 劉曉明. 橡膠-鋼球支座在扭轉載荷作用下的斷裂分析[J]. 應用力學學報, 2009, 26(1):176-180.

[5] 林福泳. 板彎曲問題的群論方法[J]. 計算力學學報, 2004, 21(4):459-463.

[6] 程昌鈞, 盛冬發等. 損傷粘彈性Timoshenko梁的擬靜態力學行為分析[J]. 應用數學和力學, 2006, 27(3):267-274.

[7] 王全鳳, 李華煌. 薄壁桿件側向穩定的近似閉合解[J]. 工程力學, 1996, 13 (2):24-33.

[8] 韋建剛, 陳寶春等. 純壓鋼管拱穩定臨界荷載計算的等效柱法[J]. 應用力學學報, 2009, 26(1):194-200.

[9] 周克民, 李俊峰. 結構拓撲優化研究方法綜述[J]. 力學進展, 2005, 35(1): 69-76.

[10] 童昕, 顧崇銜. 一般粘彈結構的模態分析[J]. 應用力學學報, 2000, 17(1): 67-75.

[11] 周瑞忠, 周小平等. 小波基無單元法及其工程應用[J]. 工程力學,2003, 20(6):70-74.

[12] 黃慶豐, 王全鳳等. Wilson-θ法直接積分的運動約束和計算擾動[J]. 計算力學學報,2005,22(4):477-481.

[13] 方德平, 王全鳳. 框-剪結構剪力墻可中斷高度的分析研究[J]. 工程力學,2007,24(4):124-128.

[14] 葉榮華. 框―剪體系無連續化假定的簡化算法[J]. 工程力學, 1994,11(1): 52-59.

[15] 陶忠, 高獻. FRP約束混凝土的應力-應變關系[J]. 工程力學, 2005, 22 (4):187-195.

[16] 施景勛, 林建華. 重力壩與水、地基動力禍合系統地震反應的時域分析[J]. 工程力學, 1994, 11(3):99-108.

[17] Mejdi Azaiez, Jie Shen, Chuanju Xu, and Qingqu Zhuang, A Laguerre- Legendre Spectral Method for the Stokes Problem in a Semi-Infinite Channel , SIAM J. Numer. Anal., 2008, 47(1): 271-292.

[18] Roger Peyret, Spectral Methods with Application to Incompressible Viscous Flow, Springer Verlag, 2002.

[19] Chuanju Xu, Yumin Lin, A numerical comparison of outflow boundary conditions for spectral element simulations of incompressible flows , Commun. Comput. Phys., 2007,(2): 477-500.

[20] R.Pasquetti, Chuanju Xu, High-Order Algorithms for Large-Eddy Simulation of incompressible Flows, J. Scient. Computing, 2002, 17(1-3): 273-284.

[21] Zhijian Rong, Chuanju Xu, Spectral Vanishing Viscosity for Large-Eddy Simulations by Spectral Element Methods , Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 1-7.

[22] Chuanju Xu, Stabilization Methods for Spectral Element Computations of Incompressible Flows, Journal of Scientific Computing, 2006, 27(1-3): 495-505.

[23] 郭益深,陳力. Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance[J]. Applied Mathematics and Mechanacs, 2008, 29(5):583-590.

[24] 陳志煌,陳力. 漂浮基雙臂空間機器人姿態與末端抓手慣性空間軌跡協調運動的模糊滑模控制[J]. 力學季刊, 2008, 29(3): 399-404.

[25] 唐曉騰,陳力.自由漂浮雙臂空間機器人基聯坐標系內軌跡的一種增廣變結構魯棒控制方法[J]. 中國機械工程, 2008, 19(19): 2278-2282.

[26] 洪昭斌,陳力.雙臂空間機器人關節運動的一種增廣自適應控制方法[J]. 空間科學學報,2007, 27(4): 347-352.

[27] 陳力, 劉延柱. 帶滑移鉸空間機械臂協調運動的復合自適應控制[J]. 高技術通訊, 2001, 11(10): 78-82.

[28] 陳力. 參數不確定空間機械臂系統的魯棒自適應混合控制[J].控制理論與應用. 2004, 21(4): 512-516.

[29] 梁捷,陳力. 具有未知載荷參數的漂浮基空間機械臂姿態、關節協調運動的模糊自適應補償控制[J]. 空間科學學報,2009,29(3): 338-345.

[30] 洪昭斌,陳力. 基于速度濾波器的漂浮基空間機械臂魯棒控制[C]. 中國航天可持續發展高峰論壇暨中國宇航學會第三屆學術年會, 北京, 2008

[31] 郭益深, 陳力. 漂浮基空間機械臂姿態、末端爪手協調運動的自適應神經網絡控制[J].工程力學, 2009, 26(7): 181-187.

[32] 郭益深,陳力. 基于RBF神經元網絡的漂浮基空間機械臂關節運動自適應控制方法[J]. 中國機械工程, 2008, 19(20): 2463-2468.

[33] 洪昭彬,陳力. 漂浮基雙臂空間機器人系統的模糊神經網絡自學習控制[J]. 機器人, 2008, 30(5): 435-439.

[34] 黃登峰, 陳力.Neural Network Feed-forward Control of Free-floating Dual-arm Space robot System in Joint Space.The 59th International Astronautical Congress, Glasgow, Scotland, 29 September 3 October 2008.

[35] 郭益深,陳力.漂浮基柔性空間機械臂姿態與關節協調運動的Terminal滑模控制[J]. 動力學與控制學報, 2009, 7(2): 158-163.

[36] 嚴世榕,S.K. Tso,A new suspension-type maintenance system for tall buildings and its mechanical analysis, Proceedings of IEEE mechatronics and machine vision in practice, Perth, Australia,2003.12.

[37] 嚴世榕,S.K. Tso,爬墻式機器人安全系統的動力學變結構控制研究[J].機器人,2002,24(2): 122-125.

[38] 嚴世榕,劉梅,等. 雙容器提升系統在加速過程中的動力學控制研究[J]. 振動工程學報,2001,14(3): 322-324.

[39] 嚴世榕,聞邦椿. 攤鋪機壓實機構的一種非線性動力學理論研究[J]. 中國公路學報,2000,13(3): 123-126.

[40] 嚴世榕,林志偉. Study on a new safety control method for a vehicle, Proceedings of IEEE ICAL 2009, Shenyang, 2009.

[41] 嚴世榕,蘇振海. Dynamic control of an electric steering vehicle, Proceedings of IEEE ICAL 2008, Qingdao, 2008.

[42] 管迪,陳樂生. 振動壓路機的一種非線性動力學建模與仿真[J]. 系統仿真學報,2007,19(24): 5809-5811,5817.

[43] 張偉,陳立群. Vibration control of an axially moving string system: wave cancellation method. Applied Mathematics and Computation,2006, 175(1).

[44] 張偉,陳立群. 軸向運動弦線橫向振動的自適應方法[J]. 機械工程學報, 2006, 42(4): 96-100.

[45] 張偉,陳立群. 軸向運動弦線橫向振動控制的Lyapunov方法[J]. 控制理論與應用, 2006, 23(4): 531-535.

[46] 張偉,陳立群. 軸向運動弦線橫向振動的線性反饋控制[J].應用力學學報,2006,23(2): 242-245.

[47] 向宇, 程璇, 張穎. PZT 在機電疲勞作用下的微裂紋和疇變[J]. 廈門大學學報,2001,40(1): 74-80.

[48] 張穎. 關于鐵電鐵彈材料的自然構形[J]. 力學學報, 2000,32(2): 213- 222.

[49] 張穎. 外加電場作用下層狀鐵電多晶材料板的模擬[J]. 廈門大學學報(自然科學版),1999,38(3): 396-402.

[50] Zhang S, Cheng X., Zhang Y., Recent progress in observations of domain switching in ferroelectric ceramics, RARE METAL MATERIALS AND ENGINEERING,34:31-36 Suppl.2 SEP(2005).

[51] Zhang S, Cheng X., Zhang Y., In situ Raman spectroscopy observation for domain switching of ferroelectric ceramics, ACTA METALLURGICA SINICA, 2005,41 (6).

[52] Chen ZW, Lu ZY, Chen XM, Cheng X., Zhang Y., Effects of electrical characters on electrical fatigue behavior in PLZT ferroelectric ceramics, HIGH-PERFORMANCE CERAMICS, 2005, 1 (2).

[53] Zhang Y., Chen ZW, Cheng X., Zhang S, In situ XRD investigation of domain switching in ferroelectric ceramics PLZT during an electric fatigue process, ACTA METALLURGICA SINICA, 2004, 40 (12).

[54] Chen ZW, Cheng X., Zhang Y., Effect of temperature on electric fatigue behaviour of PLZT ferroelectric ceramics, RARE METAL MATERIALS AND ENGINEERING, 2004, 33 (8).

[55] Chen ZW, Cheng X., Zhang Y., Mechanism of electric fatigue in PLZE ceramics, ACTA METALLURGICA SINICA, 2004, 40 (3).

[56] Ying Zhang, Xuan Cheng, Rong Qian, Fatigue behavior of ferroelectric ceramics under mechanically_/electrically coupled cyclic loads, Materials Science and Engineering A351 (2003):81-85.

[57] Ting Wang, Zude Feng, Dynamic mechanical properties of cortical bone: The effect of mineral content, Materials Letters 59 (2005) 2277 2280.

[58] Zude Feng a,), Jae Rho b, Seung Han c, Israel Ziv, Orientation and loading condition dependence of fracture toughness in cortical bone, Materials Science and Engineering C 11 _2000. 4146.

[59] 馮祖德.皮質骨在拉伸型、剪切型和撕裂型加載條件下的斷裂韌性――縱向斷裂和橫向斷裂的比較[J]. 生物醫學工程學雜志,1997, 14(3): 199-204.

[60] Liu Y. X., Cheng X., Zhang Y. Phase transitions near morphotropic phase boundary in PLZT ceramics observed by in situ Raman spectroscopy, ACTA METALLURGICA SINICA,2008, 44(1):29-33.

[61] ZHANG Sa, CHENC Xuan, ZHANG Ying, In-situ observation on domain switching of PLZT via Raman spectroscopy, Transactions of Nonferrous Metals Society of China, 2006, 16:638-642.

[62] Siwei Li, Zude Feng, Hui Mei, Litong Zhang, Mechanical and microstructural evolution of Hi-Nicalon Trade Mark SiC fibers annealed in O2H2OAr atmospheres, Materials Science and Engineering A 487 (2008):424-430.

[63] Yao R. Q., Wang Y. Y. Feng Z. D., The effect of high-temperature annealing on tensile strength and its mechanism of Hi-Nicalon SiC fibres under inert atmosphere, FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2008, 31(9):777-787.

[64] 陳.工程力學教改實踐中的幾個關鍵問題[J].高等教育研究,1998, (1).

[65] 祁皚,陳,陳貞鉅.在《結構力學》課程中融入前沿知識的嘗試[J].力學與實踐,2005, 27(4): 70-72.

[66] 陳.貼補法對圖乘計算的簡化[J]. 力學與實踐,1996, 18(2): 58, 62.

[67] 陳, 等.考慮Ⅱ階效應的剛架拱影響線[J]. 福州大學學報(自然科學版),2002, (1): 20.

[68] 陳.結構力學教學改革十年回顧[J]. 福州大學學報(哲社版),2005年教育專輯.

[69] 張建霖等.土木工程專業力學教學的改革與探索[J]. 廈門大學學報(哲社版),2000年增刊.

[70] 陳等.箱梁現澆預應力組合桁式膺架體系研究[J]. 土木工程學報,2004,(11): 9.

[71] 周克民, 胡云昌.利用有限元構造Michell桁架的一種方法[J]. 力學學報,2002, 34(6): 935-944.

[72] 陳, 唐意, 黃文機.多車荷載下剛架拱橋車振仿真可視化研究[J]. 工程力學,2005, 22(1): 218-222.

[73] 陳,陳五湖,祁皚.結構力學網絡教學綜合系統研究[J]. 高等建筑教育,2004, 13(4): 75-77.

課題組成員:

1、嚴世榕,福州大學車輛振動與電子控制研究所所長、教授。

2、周瑞忠,福州大學土木工程學院教授(本文顧問)。

3、周克民,華僑大學土木工程學院教授。

4、許傳矩,廈門大學數學科學學院教授。

5、王東東,廈門大學建筑與土木學院教授。

6、陳力,福州大學機械工程學院教授。

7、周志東,廈門大學材料學院副教授。