地質礦產勘探遙感找礦技術

時間:2022-04-25 02:36:00

導語:地質礦產勘探遙感找礦技術一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

地質礦產勘探遙感找礦技術

1遙感技術的找礦應用

1.1直接應用——遙感蝕變信息的提取

巖漿熱液或汽水熱液使圍巖的結構、構造和成分發生改變的地質作用稱為圍巖蝕變。圍巖蝕變是成礦作用的產物,圍巖蝕變的種類(組合)與圍巖成分、礦床類型有一定的內在聯系,圍巖蝕變的范圍往往大于礦化的范圍,而且不同的蝕變類型與金屬礦化在空間分布上常具規律可循,因此,圍巖蝕變可作為有效的找礦標志。

1.1.1蝕變遙感異常找礦標志

圍巖蝕變是熱液與原巖相互作用的產物。常見的蝕變有硅化、絹云母化、綠泥石化、云英巖化、夕卡巖化等。

1.1.2信息提取的實現

與地物發生反射、透射等作用的電磁波是地物信息的載體,地物的光譜特性與其內在的物理化學特性緊密相關,物質成分和結構的差異造成物質內部對不同波長光子的選擇性吸收和反射。具有穩定化學組分和物理結構的巖石礦物具有穩定的本征光譜吸收特征,光譜特征的產生主要是由組成物質的內部離子、基團的晶體場效應或基團的振動效果引起的。各種礦物都有自己獨特的電磁輻射,利用波譜儀對野外采樣進行光譜曲線測量,根據實測光譜與參考資料庫中的參考光譜進行對比,可以確定出樣品的吸收谷,識別出礦物組合。根據曲線的吸收特征,選擇合適的圖像波段進行信息提取。根據量子力學分子群理論,物質的光譜特征為各組成分子光譜特征的簡單疊加。傳感器在空中接收地表物質的光譜特性,根據量子力學分子群理論,物質的光譜特征為各組成分子光譜特征的簡單疊加。傳感器在空中接收地表物質的光譜特性,因為探測范圍內有干擾介質存在(白云、大氣、水體、陰影、植被、土壤等),因此,在進行蝕變礦物信息提取時,根據干擾物質的光譜曲線出發,進行預處理消除干擾。主要造巖礦物成分(0,si,A1,Mg)的振動基頻在可見——近紅外區不產生診斷性吸收谷的譜帶。不同類型的礦物蝕變會引起Fe,Fe,OH一,中某一類的變化,Fe2+,Fe3+,OH一,CO:在可見一近紅外區可產生巖石譜帶中的不同吸收谷組合,例如,在0.4~1.3um范圍內的光譜特性是因為礦物晶格結構中的Fe,cu等過渡性金屬元素的電子躍遷引起的;1.3~2.5的光譜特性是由礦物組成中的CO:,OH口HO引起的。根據吸收谷所處的波長位置、深度、寬度、對稱性等特征進行處理,提取相應的蝕變遙感異常(遙感異常)?,F在應用的數據有多光譜TM,ETM+,ASTER數據以及少量的高光譜與微波遙感數據等。蝕變遙感信息在整景圖像上信息占有份額低,但局部地區的信息并不微弱,因此即使是微弱的蝕變異常也可以被檢測出,試驗證明,遙感信息檢測的蝕變檢出下限優于1/20000。目前遙感找礦蝕變異常信息的提取有多種方法,例如波段比值法、主成分分析法、光譜角識別法和MPH技術(MaskPCAandHIS)、混合象元分解等。“ETM+圖像數據的綜合遙感找礦蝕變異常信息的提取”、“ETM+(TM)蝕變遙感異常提取方法技術”都取得了一定的成果。在蝕變遙感信息提取和應用研究中,形成了~套獨特的技術,即“去干擾異常主分量門限化技術”,包括:①預處理:校正及去干擾,校正包括系統輻射校正、幾何校正、大氣粗略校正;干擾包括云、植被、陰影、水、雪等的去除。②信息提?。阂哉暗腡M(ETM+)圖像遙感異常信息的提取為主,其方法以PCA主分量分析為主,比值法為輔,同時用光譜角分析法對所獲得的主分量異常進行篩選,然后進行門限化分級處理,以獲得分級異常圖。由于涉及到的礦床類型、規模、控礦要素、蝕變類型以及礦產勘查程度不同,僅靠單一的處理方法不利于異常信息的提取,因此需要多種方法的有效組合,一種方法為主其他方法為輔這些遙感信息提取技術在資源勘探過程中發揮了很大的作用,目前,利用圍巖蝕變找礦已經取得了很好的效果。

1.2遙感技術間接找礦的應用

1.2.1地質構造信.息的提取

內生礦產在空間上常產于各類地質構造的邊緣部位及變異部位,重要的礦產主要分布于扳塊構造不同塊體的結合部或者近邊界地帶,在時間上一般與地質構造事件相伴而生,礦床多成帶分布,成礦帶的規模和地質構造變異大致相同。遙感找礦的地質標志主要反映在空間信息上。從與區域成礦相關的線狀影像中提取信息(主要包括斷裂、芍理、推覆體等類型),從中酸性巖體、火山盆地、火山機構及深亨巖漿、熱液活動相關的環狀影像提取信息(包括與火山有關的盆地、構造),從礦源層、賦礦巖層相關的帶狀影像提取信啟、(主要表現為巖層信息),從與控礦斷裂交切形成的塊狀影像及與感礦有關的色異常中提取信息(如與蝕變、接觸帶有關的色環、色帶、色塊等)。當斷裂是主要控礦構造時,對斷裂構造遙感信息進行重點提取會取得一定的成效。遙感系統在成像過程中可能產生“模糊作用”,常使用戶感興趣的線性形跡、紋理等信息顯示得不清晰、不易識別。人們通過目視解譯和人機交互式方法,對遙感影像進行處理,如邊緣增強、灰度拉伸、方向濾波、比值分析、卷積運算等,可以將這些構造信息明顯地突現出來。除此之外,遙感還可通過地表巖性、構造、地貌、水系分布、植被分布等特征來提取隱伏的構造信息,如褶皺、斷裂等。提取線性信息的主要技術是邊緣增強。

1.2.2植被波譜特征的找礦意義

在微生物以及地下水的參與下,礦區的某些金屬元素或礦物引起上方地層的結構變化,進而使土壤層的成分產生變化,地表的植物對金屬具有不同程度的吸收和聚集作用,影響植葉體內葉綠素、含水量等的變化,導致植被的反射光譜特征有不同程度的差異。礦區的生物地球化學特征為在植被地區的遙感找礦提供了可能,可以通過提取遙感資料中由生物地球化學效應引起的植被光譜異常信息來指導植被密集覆蓋區的礦產勘查,較為成功的是某金礦的遙感找礦、東南地區金礦遙感信息提取。不同植被以及同種植被的不同器官問金屬含量的變化很大,因此需要在已知礦區采集不同植被樣品進行光譜特征測試,統計對金屬最具吸收聚集作用的植被,把這種植被作為礦產勘探的特征植被,其他的植被作為輔助植被。遙感圖像處理通常采用一些特殊的光譜特征增強處理技術,采用主成分分析、穗帽變換、監督分類(非監督分類)等方法。植被的反射光譜異常信息在遙感圖像上呈現特殊的異常色調,通過圖像處理,這些微弱的異常可以有效地被分離和提取出來,在遙感圖像上可用直觀的色調表現出來,以這種色調的異同為依據來推測未知的找礦靶區。植被內某種金屬成分的含量微小,因此金屬含量變化的檢測受到譜測試技術靈敏度的限制,當金屬含量變化微弱時,現有的技術條件難以檢測出,檢測下限的定量化還需進一步試驗。理論上講,高光譜提取植被波譜的性能要優于多光譜很多倍,例如對某一農業區進行管理,根據每一塊地的波譜空間信息可以做出灌溉、施肥、噴灑農藥等決策,當某農作物干枯時,多光譜只能知道農作物受到損害,而高光譜可以推斷出造成損害的原因,是因為土地干旱還是遭受病蟲害。因此利用高光譜數據更有希望提取出對找礦有指示意義的植被波譜特征。

1.2.3礦床改造信息標志

礦床形成以后,由于所在環境、空間位置的變化會引起礦床某些性狀的改變。利用不同時相遙感圖像的宏觀對比,可以研究礦床的剝蝕改造作用;結合礦床成礦深度的研究,可以對類礦床的產出部位進行判斷。通過研究區域夷平面與礦床位置的關系,可以找尋不同礦床在不同夷平面的產出關系及分布規律,建立夷平面的找礦標志。另外,遙感圖像還可進行巖性類型的區分應用于地質填圖,是區域地質填圖的理想技術之一,有利于在區域范圍內迅速圈定找礦靶區。

2遙感找礦的發展前景

2.1高光譜數據及微波遙感的應用

高光譜是集探測器技術、精密光學機械、微弱信號檢測、計算機技術、信息處理技術于一體的綜合性技術。它利用成像光譜儀以納米級的光譜分辨率,成像的同時記錄下成百條的光譜通道數據,從每個像元上均可以提取一條連續的光譜曲線,實現了地物空間信息、輻射信息、光譜信息的同步獲取,因而具有巨大的應用價值和廣闊的發展前景。成像光譜儀獲得的數據具有波段多,光譜分辨率高、波段相關性高、數據冗余大、空問分辨率高等特點。高光譜圖像的光譜信息層次豐富,不同的波段具有不同的信息變化量,通過建立巖石光譜的信息模型,可反演某些指示礦物的豐度。充分利用高光譜的窄波段、高光譜分辨率的優勢,結合遙感專題圖件以及利用豐富的紋理信息,加強高光譜數據的處理應用能力。微波遙感的成像原理不同于光學遙感,是利用紅外光束投射到物體表面,由天線接收端接收目標返回的微弱回波并產生可監測的電壓信號,由此可以判定物體表面的物理結構等特征。微波遙感具有全天時、全天候、穿透性強、波段范圍大等特點,因此對提取構造信息有一定的優越性,同時也可以區分物理結構不同的地表物體,因為穿透性強,對覆蓋地區的信息提取也有效。微波遙感技術因其自身的特點而具有很大的應用潛力,但微波遙感在天線、極化方式、斑噪消除、幾何校正及輻射校正等關鍵技術都有待于深入研究,否則勢必影響微波遙感的發展。

2.2數據的融合

隨著遙感技術的微波、多光譜、高光譜等大量功能各異的傳感器不斷問世,它們以不同的空間尺度、時間周期、光譜范圍等多方面反映地物目標的各種特性,構成同一地區的多源數據,相對于單源數據而言,多源數據既存在互補性,又存在冗余性。任何單源信息只能反映地物目標的某一方面或幾個方面的特征,為了更準確地識別目標,必須從多源數據中提取比單源數據更豐富、有用的信息。多源數據的綜合分析、互相補充促使數據融合技術的不斷發展。通過數據融合,一方面可以去除無用信息,減少數據處理量,另一方面將有用的信息集中起來,便于各種信息特征的優勢互補。數據的融合包括遙感數據間的融合、遙感數捱與非遙感數據的融合。融合技術的實現方法有多種,簡單易行的是對幾何配準后的像元逐點進行四則運算或HIS變換,還有一些方法是對多源數據先進行預處理(特征提取、判別分析)后再進行信息融合,主要的方法有代數運算融合、小波變換融合等。蝕變礦物特征光譜曲線的吸收谷位于多光譜數據的波段位置,因此可以識別蝕變礦物,但是波段較寬,只對蝕變礦物的種屬進行分類。與可見一紅外波段的電磁波相比,雷達波對地面的某些物體具有強的穿透能力,能夠很好地反映線性、環性溝造。雷達圖像成像系統向多波段、多極化、多模式發展,獲取地表信息的能力越來越強??偟膩碚f,多光譜、高光譜數據的光譜由線特征具有區分識別巖石礦物的效果,所以對光學圖像與雷達圖像進行融合處理,既能提高圖像的分辨率、增強紋理的識別能力,又能有效地識別礦物類型。盡管融合技術的研究取得了一些可喜的進展,但未形成成熟的理論、模型及算法,缺乏對融合結果的有效評價手段。在以后的研究中,應該深入分析各種圖像的成像機理及數據間的相關性、互補性、冗余性等,解決多源數據的輻射精校正問題,發展空間配準技術。

2.33S的結合

3s是遙感(RS)、地理信息系統(GIS)及全球定位系統(GPS)的簡稱。利用GPS能迅速定位,確定點的位置坐標并科學地管理空間點坐標。海量的遙感數據需龐大的空間,因此要有強大的管理系統,隨著當今人力資源價格的升高,在區域范圍內找礦時,遙感表現出最小投入獲得最大回報的優勢,那么RS與GIS的結合也勢在必行,因為GIS更有利于區域范圍的影像管理及瀏覽。隨著3S技術發展,遙感數據的可解譯程度與解譯速度得到進一步提高,目前,地質工作者嘗試將3S與VS(可視化系統)、CS(衛星通訊系統)等技術綜合應用,取得了較好的效果。

2.4圖像接收、處理及信息提取技術的發展完善

由傳感器接收的地物光譜信息傳到地面接收站,在計算機操作平臺上進行圖像的處理以及遙感信息提取。隨著傳感器的發展、數據量的增大,從海量的遙感數據中提取有用的、相對微量的找礦信息不是一件容易的事,傳感器的發展是信息提取的前提,圖像處理技術的開發是信息提取的關鍵。為了提取更客觀有效的找礦信息,需要進行以下幾方面的工作:

(1)進一步發展高分辨率傳感器,以便接收更微弱、細小的地質信息;

(2)加強信息提取方法的研究解決計算機處理的技術問題,例如補償信號在傳感器的誤差、校正輻射、地形起伏等引起的圖像失真等;

(3)在選擇參與信息提取的波段時,深入波段選取依據的理論研究,例如進行巖石樣品的光譜測試,礦物識別與分析是遙感地質信息提取的核心,所以需要確定不同類型的礦物在各波段的吸收性。同樣在利用植物地化找礦時需配套精密的物質成分分析儀器及技術等;

(4)遙感圖像處理海量數據,經處理后的一景圖數據量很大,為保障數據處理速度,需要強大的計算機技術(硬件與軟件)支撐,:圖像處理中要將算法轉化為計算機的可識別語句,需要計算機語言的發展。發展有利于提高遙感圖像的信噪比、優化信息提叉的軟件平臺,實現不同格式圖像問的兼容性。

3結束語

綜上所述,遙感技術作為礦產勘查的一種手段應用于找礦,取得了一定成就。遙感技術的直接應用是蝕變遙感信息的提取,遙感技術的間接應用包括地質構造信息、植被的光譜特征及礦床改造信息等方面。遙感找礦具有很大的發展前景的領域主要有:高光譜數據、數據融合技術、3s的緊密結合、計算機技術的發展。遙感技術在地質找礦中的應用包括直接應用和間接應用:直接應用是指遙感蝕變信息的提取,間接應用則包括地質構造信息、植被的光譜特征及礦床改造信息等方面。