激光源溫控電路設計論文

時間:2022-07-23 10:58:58

導語:激光源溫控電路設計論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

激光源溫控電路設計論文

1激光源溫控電路設計原理

1.1TEC工作原理

半導體制冷器(TEC)是以帕爾貼效應為基礎研制而成,其最基礎的元件是利用一只P型半導體和一只N型半導體連成的熱電偶。當通電后在兩個接頭處就會產生溫差,電流從N流向P,形成制冷面;電流從P流向N,形成制熱面。若干組熱電偶對串聯就構成了一個簡單的半導體制冷器。在制冷面或制熱面增加一個熱交換器就可以完成半導體制冷器與外界環境的能量交換。

1.2半導體激光器溫控電路設計

1.2.1半導體激光溫控電路原理

高穩半導體激光器一般都有內置半導體熱電制冷器(TEC)和溫度傳感器等相關的溫控元件來保證激光器管芯溫度可控。半導體激光器內置溫控系統基本工作原理如圖1所示。將溫度傳感器(常用負溫度系數的熱敏電阻)與激光器管芯安置在同一熱沉上,起到實時監測激光管芯溫度的作用。在常溫25℃時(在25℃時激光器的整體性能最為優良),通過調節由R1和R2組成的電阻網絡可以設定比較器的參考電壓值,在這里稱之為基準電壓。以25℃為參照,若LD管芯溫度相對升高,則熱敏電阻的阻值變小,比較器的負輸入端電壓相對變小,輸出電壓也隨著變化。TEC驅動源將驅使電流從N型半導體流向P型半導體形成制冷面,實現對LD管芯進行制冷。若LD管芯溫度相對降低,則熱敏電阻的阻值變大,比較器的輸入電壓相對變大,輸出電壓也隨著變化,TEC驅動源將驅使電流從P型半導體流向N型半導體,形成制熱面,實現對LD管芯制熱。

1.2.2TEC驅動源類型

半導體激光器的溫度控制系統需要滿足溫度控制精度高、響應速度快且穩定性高的要求,同時要能實現制冷和制熱雙向控制,以適應外界溫度變化和半導體激光器本身工作條件變化。一般情況下,TEC驅動源按驅動工作模式可以分為線性工作模式和脈寬調制工作模式(PWM)兩種類型。TEC驅動源線性工作原理:通過控制三極管的開關狀態可以控制驅動TEC的電流大小和方向,這種驅動方式的效率一般低于50%,需要為三極管提供良好的導熱通道,且有控溫“死區”。但這種模式有噪聲低和可靠性高等優點。TEC驅動源脈寬調制(PWM)工作原理:在PWM方式下,三極管工作在飽和狀態,而不是線性區域,只有當需要向負載供電時才導通。電路通過4個三極管來控制電流的方向和大小,電路結構呈H橋型。PWM方法可以有效地提高效率和降低功率部件的熱量,工作效率一般大于80%,能實現無“死區”溫控。但這種模式有著噪聲高和可靠性低等缺點。兩種驅動源在實際使用中各有利弊,具體采用何種驅動方式需要根據實際情況來最終確定。

2航天高穩激光源溫控電路設計方案

2.1MAX1968功能及其特點

MAX1968是MAXIM公司研制生產的一款高度集成具有紋波噪聲抑制功能的脈寬調制TEC驅動芯片,調制頻率為500kHz/1MHz;單電源供電,供電電壓范圍為3~5.5V;能夠實現最大3A雙向TEC驅動電流,完成對LD管芯的制冷或制熱。MAXIM公司研制生產的MAX1968芯片具有體積小、效率高、價格低和可實現雙向無死區溫控等優點,但也存在封裝材料簡單(塑料器件)和工作溫度范圍較窄等缺陷。

2.2MAX1968芯片設計電路及失效分析

2.2.1MAX1968芯片設計電路分析

MAX1968芯片資料有應用芯片電路推薦,從推薦電路應用方案來看,電路的設計在濾波、抑制紋波噪聲、LC濾波諧振電路等都做了詳細的考慮。在COMP引腳與GND之間焊接了0.01μF的電容,確保電流控制環的穩定工作。FREQ引腳接高電位,即內部振蕩器的開關頻率選擇為1MHz,這樣可以減小電容和電感值。按芯片資料推薦電路搭建芯片外圍電路,將芯片使能引腳(SHDN)直接連接高電位,即當MAX1968芯片上電后芯片就需要工作,根據CTLI引腳的電壓輸入情況判斷TEC需要制冷或制熱,并立即實施。在實際使用過程中發現,在給該溫控電路上電瞬間,時有MAX1968失效的現象,具體表現為電源輸出電流急劇增大。

2.2.2MAX1968芯片失效分析

用立體顯微鏡、金相顯微鏡和晶體管特性圖示儀等儀器對兩只失效的MAX1968芯片進行了詳細分析,失效的情況完全相同,都是芯片的第5、6端之間以及第23、24端之間存在異常電應力,導致這幾端之間的鋁條燒壞短路所致。使用晶體管特性曲線圖示儀對這兩塊芯片進行引腳間特性測試,發現兩電路第6、8、10端(LX2)與第5、7端(PGND2)之間短路,第19、21、23端(LX1)與第22、24端(PGND1)之間短路。第9端(PVDD2)與第5、7端(PGND2)之間未見短路現象。將這兩塊芯片進行開蓋,在開蓋過程中,由于內部芯片尺寸較大,電路個別引腳經腐蝕后脫落,但經測試,短路現象依然存在,未破壞原始失效現象。在金相顯微鏡下,對兩塊芯片表面進行仔細觀察,發現兩塊芯片第5、6端以及第23、24端之間存在燒毀現象,如圖2所示。芯片為多層金屬化結構,從燒毀形貌分析,可能是下層鋁條燒毀后,導致上層鋁條燒毀短路。由于兩塊芯片失效現象一致,因此可以排除器件偶然缺陷導致失效的可能,應該是芯片失效與外部異常電應力導致內部場效應管擊穿。

2.3航天高穩激光源溫控電路設計方案

2.3.1完善MAX1968芯片電路設計

通過上述分析,結合芯片內部結構和TEC驅動源脈寬調制(PWM)工作原理,我們基本能判斷是芯片內部燒毀的通道發生在場效應管上。在試驗過程中發現,芯片失效是一個慢性漸變的過程,可以用14引腳(OS2)、15引腳(OS1)分別與GND的阻抗R和R'來表征,隨著上電次數逐漸增多,R和R'的阻值從開始的兆歐數量級慢性漸變到歐數量級,并最終失效。失效的原因認為是MAX1968芯片上電后,芯片就根據CTLI引腳電壓輸入情況判斷TEC需要制冷或制熱,并立即進行工作,上述過程在上電的一瞬間就會完成。這種輸入與輸出同時實施勢必會導致芯片內部有大的紋波電壓或大電流產生,因發熱而導致芯片失效。通過完善MAX1968芯片電路設計,在MAX1968的使能引腳中引入了毫秒級的延時,致使MAX1968芯片完成加電后再實施輸出工作。具體新的設計電路方案如圖3所示。通過大量的試驗證明阻抗R和R'的阻值不衰退,這說明對MAX1968芯片外圍電路的完善是有效的。

2.3.2MAX1968新設計方案電路試驗驗證

根據完善電路特性搭建了對電路性能驗證比較的試驗平臺,試驗的基本思路是讓兩種電路(完善前和完善后)在帶同樣負載的情況下,分別對完善電路和未完善電路進行上下電連續沖擊,上、下電頻率同為13Hz,如圖4所示。在兩組電路的驗證中,完善之前的設計電路在經過約32min之后電源輸出電流突然增大,經測試發現MAX1968芯片已經失效。完善之后的設計電路在經過28天之后,測試MAX1968芯片的電性能依舊正常。由此可見對MAX1968外圍設計電路的完善是有效的。

2.3.3航天高穩激光源溫控電路設計工程驗證

航天高穩激光源溫控電路,在某項航天測試(包括振動、沖擊、熱循環和熱真空等試驗)中各項指標都正常,最終順利完成了航天相關試驗。

3結束語

本文從使用器件要體積小、重量輕和工作效率高等航空航天實際應用要求出發,從TEC工作原理,TEC驅動源類型和實際選用驅動芯片等角度系統性地對溫控理論進行了梳理,重點對MAX1968芯片特性進行了說明。在理論分析和大量試驗的基礎上對MAX1968芯片設計電路進行完善,完善之后的電路順利通過某型號航天項目鑒定級試驗測試,表明該溫控電路在實際應用中能夠達到雙向無死區溫控和0.01℃溫度穩定性的要求,具有廣泛的實際工程應用價值。

作者:張昕 覃波 付益 覃良標 黃芳 盧程宏 單位:中國電子科技集團公司